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Foreword to the First Edition

This book is based on one of the most consequential emergent results of the ongoing 
computer revolution, namely, that computers can be trained—under the right condi-
tions—to reliably classify new data, such as patient data. This capability, called 
machine learning (or statistical learning), has been deployed in many areas of tech-
nology, commerce, and medicine. Data mining and statistical prediction models 
have already crept into many areas of modern life, including advertising, banking, 
sports, weather prediction, politics, science generally, and medicine in particular. 
The ability of computers to increasingly communicate with people in a natural way 
(understanding language and speaking to us), such as the famed IBM “Watson” 
appearance on Jeopardy, or “Siri” on iPhones, portends an accelerating role of 
sophisticated computer models that predict and respond to our requests. 
Fundamentally, these developments rely on the ability of statistical computer meth-
ods to pull (as Nate Silver puts it) “signal from the noise.” While traditional statisti-
cal methods typically attempt to ascertain the role of particular variables in 
determining an outcome of interest (hence, needing many data points for every vari-
able included in the prediction model), machine learning represents a different goal, 
to reliably predict an outcome, for example that an imaging abnormality is benign 
with a high degree of certainty. The statisticians and computer scientists working in 
this emerging area are often happy to use large numbers of variables (or previous 
data instances) that essentially vote together in a nonlinear fashion. Simplicity is 
happily traded for an improved ability to predict.

The chapters in this book comprehensively review machine learning and related 
modeling methods previously used in many areas of radiation oncology and diag-
nostic radiology. The editors and authors are explorers in this new territory, and 
have performed a great service by surveying and mapping the many achievements 
to date and outline many areas of potential application. Early chapters review the 
fundamental characteristics, and varieties, of machine learning methods, including 
difficult issues regarding evaluation of predictive model performance. The most 
well-developed use of machine learning reviewed is the creation of computer-aided 
diagnosis (CAD) models to provide a reliable “second opinion” for radiologists 
reading mammograms to detect breast cancer. The increasing use of wider range of 
imaging features referred to as “radiomics,” in analogy to “genomics,” presented in 
radiomics for disease detection, and radiomics for diagnosis, or “theragnostic” [1] 
chapters, which are devoted to details of image-based informatics formats and 
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database systems, including tools to share and learn from institutional databases. 
Machine learning approaches to aid in the planning, delivery, and quality assurance 
of radiation therapy are reviewed. Efforts to predict response to radiation therapy 
are also reviewed in useful detail. Obtaining enough data of sufficient quality and 
diversity is the biggest challenge in predictive modeling. This is only possible if 
data are shared across institutional and national borders, both academic and com-
munity health-care systems [2].

Machine learning—coupled with computer vision and imaging processing 
techniques—has been demonstrated to be useful in diagnosis, treatment plan-
ning, and outcome prediction in radiation oncology and radiology. This is of 
particular importance since we know that doctors have increasing difficulties 
to predict the outcome of modernized complex patient treatments [3]. This 
book provides a wonderful summary of past achievements, current challenges, 
and emerging approaches in this important area of medicine. Unlike many 
other approaches to improving medicine, the use of improved and continu-
ously updated prediction models put together in “Decision Support Systems” 
holds the potential of improved clinical decision making with minimal costs 
to patients [4]. An intuitively attractive characteristic of this approach is the 
user of all the data available (rather than using only one type of data such as 
dose or gene profile). We anticipate that predictive models-based Decisions 
Support Systems will ease the implementation of personalized (or precision) 
medicine.

Despite investment in efforts to improve the skills of clinicians, patients con-
tinue to report low levels of involvement [5]. There is indeed evidence level 1 from 
a Cochrane systematic review evaluating 86 studies involving 20,209 participants 
included in published randomized controlled trials demonstrating that decision 
aids increase people’s involvement, support informed values-based choices in 
patient- practitioner communication, and improve knowledge and realistic percep-
tion of outcomes. We therefore believe the next step will be to integrate, whenever 
possible, Shared Decision Making approaches (see, e.g., www.treatmentchoice.
info; www.optiongrid.org) to include the patient perspective on the best treatment 
of choice [6].

We are sincerely convinced that this book will continue to advance precision 
medicine in oncology.

Philippe Lambin 
Department of Radiation Oncology

Research Institute GROW, Maastro Clinic,  
Maastricht University, 

Maastricht, The Netherlands

Joseph O. Deasy
Department of Medical Physics

Memorial Sloan Kettering Cancer Center, 
New York, NY, USA

Foreword to the First Edition

http://www.treatmentchoice.info
http://www.treatmentchoice.info
http://www.optiongrid.org


vii

References

 1. Lambin P, Rios-Velazquez E, Leijenaar R, et  al. Radiomics: extracting more 
information from medical images using advanced feature analysis. Eur J Cancer. 
2012;48:441–6.

 2. Lambin P, Roelofs E, Reymen B, Velazquez ER, Buijsen J, Zegers CM, Carvalho 
S, Leijenaar RT, Nalbantov G, Oberije C, Scott Marshall M, Hoebers F, Troost 
EG, van Stiphout RG, van Elmpt W, van der Weijden T, Boersma L, Valentini V, 
Dekker A. Rapid Learning health care in oncology’ – an approach towards deci-
sion support systems enabling customised radiotherapy. Radiother Oncol. 
2013;109(1):159–64.

 3. Oberije C, Nalbantov G, Dekker A, Boersma L, Borger J, Reymen B, van 
Baardwijk A, Wanders R, De Ruysscher D, Steyerberg E, Dingemans AM, 
Lambin P. A prospective study comparing the predictions of doctors versus mod-
els for treatment outcome of lung cancer patients: a step toward individualized 
care and shared decision making. Radiother Oncol. 2014;112(1):37–43.

 4. Lambin P, van Stiphout RG, Starmans MH, et al. Predicting outcomes in radia-
tion oncology–multifactorial decision support systems. Nat Rev Clin Oncol. 
2013;10:27–40.

 5. Stacey D, Bennett CL, Barry MJ, et al. Decision aids for people facing health 
treatment or screening decisions. Cochrane Database Syst Rev. 
2011;10:CD001431.

 6. Stiggelbout AM, Van der Weijden T, De Wit MP, et al. Shared decision making: 
really putting patients at the centre of healthcare. BMJ. 2012;344:e256.

Foreword to the First Edition



ix

Preface to the First Edition

Radiotherapy is a major treatment modality for cancer and is currently the main 
option for treating local disease at advanced stages. More than half of all cancer 
patients receive irradiation as part of their treatment, with curative or palliative 
intent to eradicate cancer or reduce pain, respectively, while sparing uninvolved 
normal tissue from detrimental side effects. Despite significant technological 
advances in treatment planning and delivery using image-guided techniques, the 
complex nature of radiotherapy processes and the massive amount of structured and 
unstructured heterogeneous data generated during radiotherapy from early patient 
consultation to patient simulation, to treatment planning and delivery, to monitoring 
response, to follow-up visits, invite the application of more advanced computational 
methods that can mimic human cognition and intelligent decision making to ensure 
safe and effective treatment. In addition, these computational methods need to com-
pensate for human limitations in handling a large amount of flowing information in 
an efficient manner, in which simple errors can make the difference between life 
and death.

Machine learning is a technology that aims to develop computer algorithms that 
are able to emulate human intelligence by incorporating ideas from neuroscience, 
probability and statistics, computer science, information theory, psychology, con-
trol theory, and philosophy with successful applications in computer vision, robot-
ics, entertainment, ecology, biology, and medicine. The essence of this technology 
is to humanize computers by learning from the surrounding environment and previ-
ous experiences, with or without a teacher. The development and application of 
machine learning has undergone a significant surge in recent years due to the expo-
nential growth and availability of “big data” with machine learning techniques 
occupying the driver’s seat to steer the understanding of such data in many fields, 
including radiation oncology.

The growing interest in applying machine learning algorithms to radiotherapy 
has been highlighted by special sessions at the annual meeting of the American 
Association of Physicists in Medicine (AAPM) and at the International Conference 
on Machine Learning and Applications (ICMLA). Ensuing discussions of compil-
ing these disparate applications of machine learning in radiotherapy into a single 
succinct monograph led to the idea of this book. The goal is to provide interested 
readers with a comprehensive and accessible text on the subject to fill in an impor-
tant existing void in radiotherapy and machine learning literature. Even as these 
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discussions were taking place, the subject of machine learning in radiotherapy con-
tinued its growth from a peripheral subfield in radiotherapy into widespread appli-
cations that touch almost every area in radiotherapy from treatment planning, 
quality assurance, image guidance, and respiratory motion management to treat-
ment response modeling and outcomes prediction. This rapid growth has driven the 
compilation of this textbook.

The textbook is intended to be an introductory learning guide for students and 
residents in medical physics and radiation oncology who are interested in exploring 
this new field of machine learning for their own curiosity or their research projects. 
In addition, the book is intended to be a useful and informative resource for more 
experienced practitioners, researchers, and members of both radiotherapy and 
applied machine learning as a two-way bridge between these communities. This is 
manifested by the fact that the book has been written by experts from both the radio-
therapy and machine learning domains.

The book is structured into five sections:
• The first section provides an introduction to machine learning and is a must-read 

for individuals who are new to the field. It begins with a machine learning defini-
tion (Chap. 1), followed by a discussion of the main computational learning prin-
ciples using PAC or VC theories (Chap. 2), presentation of the most commonly 
used supervised and unsupervised learning algorithms with demonstrative appli-
cations drawn from the radiotherapy field (Chap. 3), and descriptions of different 
methods and techniques used for evaluating the performance of learning meth-
ods (Chap. 4). The ever-growing role of informatics infrastructure in radiother-
apy and its application to machine learning are presented in Chap. 5. Finally, 
given the realistic challenges related to data sharing from a global radiotherapy 
network, this section concludes with a discussion of how machine learning could 
be extended to a distributed multicenter rapid learning framework.

• The second section summarizes years of successful application of machine learn-
ing in radiological sciences—a sister field to radiotherapy—as a computational 
tool for computer-aided detection (Chap. 7) and computer-aided diagnosis 
(Chap. 8).

• The third section presents applications of machine learning in radiotherapy treat-
ment planning as a tool for image-guided radiotherapy (Chap. 9) and a computa-
tional vehicle for knowledge-based planning (Chap. 10).

• The fourth section demonstrates the application of machine learning to respira-
tory motion management—a rather challenging problem for accurate delivery of 
irradiation to a moving target—by discussing predictive respiratory models 
(Chap. 11) and image-based compensation techniques (Chap. 12).

• Quality assurance is at the heart of safe delivery of radiotherapy and is a major 
part of a medical physicist’s job. Examples for application of machine learning 
to QA for detection and prediction of radiotherapy errors (Chap. 13), for treat-
ment planning (Chap. 14), and for delivery (Chap. 15) validation are presented 
and discussed.

• In the era of personalized evidence-based medicine, machine learning predictive 
analytics can play an important role in the understanding of radiotherapy 
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response (Chap. 16). Examples of successful machine learning applications to 
normal tissue complication probability (Chap. 17) and tumor control probability 
(Chap. 18) highlight the inherent power of this technology in deciphering com-
plex radiobiological response.

This book is the product of a coordinated effort by the editors, authors, and pub-
lishing team to present the principles and applications of machine learning to a new 
generation of practitioners in radiation therapy and to present the present-day chal-
lenges of radiotherapy to the computer science community, with the hope of driving 
advancements in both fields.

Montreal, QC, Canada Issam El Naqa  
Stanford, CA, USA  Ruijiang Li  
Richmond, VA, USA  Martin J. Murphy   

Preface to the First Edition
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Preface to the Second Edition

This is a revised and expanded edition of the original machine learning book in 
radiation oncology. The current expanded edition will provide a comprehensive 
overview of machine and deep learning and their role not only in radiation oncology 
and medical physics but also in the inter-related fields of general oncology and radi-
ology. The book covers machine and deep learning from basic theory, methods, into 
demonstrative applications in these areas. The book is further enriched with exam-
ples and illustrations for the interested reader. The goal remains to provide the 
reader with a comprehensive and accessible text on the subject to fill an important 
existing void in the oncology, radiology, and machine learning literature.

Since the publication of the first edition in 2015, the fields of machine and deep 
learning have witnessed tremendous growth in medicine in general and radiological 
sciences in particular. This followed the watershed moment of the emergence of 
deep learning and its successful application across the board. The first edition 
described deep learning briefly; this new edition has a dedicated chapter on this 
topic, given its importance. In addition, the introductory chapters on machine learn-
ing have been revised and/or expanded with new chapters on deep learning, quan-
tum computing, and software tools. The application chapters have also been revised 
and restructured with dedicated sections on medical image analysis, radiotherapy 
treatment planning and delivery, and outcomes modeling and decision support.

The targeted audience for this revised textbook is students and residents in oncol-
ogy and radiology who are seeking an introductory guide and to build a solid foun-
dation in machine and deep learning and their application. As in the first edition, the 
book is also intended to act as an informative resource for more experienced practi-
tioners, researchers, and members of both radiological sciences and applied machine 
learning, acting as a bridge between these communities. This is manifested by the 
fact that the book has been written by experts from both the radiological sciences 
and machine learning domains.

The revised edition of the book is structured into four parts:

• The first part provides an introduction to machine and deep learning and is a must-
read for individuals who are new to the field. It begins with machine and deep learn-
ing definitions (Chap. 1), followed by a discussion of the main computational 
learning principles (Chap. 2). Commonly used machine learning algorithms are 
described in the following two chapters; one focuses on traditional supervised, 
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unsupervised, and reinforcement learning algorithms with  demonstrative applica-
tions drawn from the oncology/radiology fields (Chap. 3) and the other one is dedi-
cated to the growing deep learning field where data representation and the learning 
tasks are embedded in the same framework (Chap. 4). This chapter provides a peda-
gogical transition from basic multi-layer neural networks to more advanced convo-
lution, recurrent, adversarial architectures and their variants, with programming 
examples as well. A new chapter on the emerging subject of quantum computing in 
machine learning is presented in Chap. 5, which should appeal not only to informa-
tion theorists but also to medical physicists, who can now see the underlying prin-
ciples of their discipline through the new lens of data analytics and how it is 
reshaping both fields. Chapter 6 presents descriptions of different methods and tech-
niques used for evaluating the performance of learning methods. This is followed by 
descriptions of software platforms, libraries, and tools for machine and deep learn-
ing that provide the reader with the many options available to jump-start their 
machine learning journey (Chap. 7). Finally, given the realistic challenges related to 
exchanging data within a global radiological sciences network, the first part con-
cludes with a discussion of data sharing, protection, and bioethics for proper appli-
cation of machine and deep learning through application of federated learning and 
FAIR principles in serving the medical field and advancing human welfare (Chap. 8).

• The second part summarizes the successful application of machine learning in 
medical image analysis, which has been recently boosted with deep learning in 
computer-aided detection (Chap. 9), computer-aided diagnosis (Chap. 10), and 
auto-contouring and segmentation (Chap. 11).

• The third part presents applications of machine and deep learning in radiotherapy 
treatment planning and delivery as a tool for safety and quality assurance (Chap. 
12), a computational vehicle for knowledge-based planning (Chap. 13), and 
intelligent motion management (Chap. 14)

• The last part is dedicated to outcome modeling and decision support, which are 
at the heart of personalized evidence-based medicine. It starts with machine 
learning predictive analytics for oncology outcomes (Chap. 15), highlighting the 
role of imaging (radiomics) and genetics (genomics) in building these models 
and improving their inter-relationship (radiogenomics) (Chap. 16). Examples of 
successful machine learning applications in radiotherapy, normal tissue compli-
cation, and tumor control probability are demonstrated in Chap. 17. Utilization 
of machine and deep learning for optimizing decision making and devising smart 
treatment strategies is discussed in Chap. 18. This part ends with a discussion of 
the potential of machine/deep learning algorithms for revamping the design of 
the gold standard for medical practice and clinical trials, by mitigating current 
challenges and improving their efficacy in Chap. 19.

This book is the product of a coordinated effort by the editors, authors, and pub-
lishing team to present the principles and applications of machine and deep learning 
to a new generation of practitioners in oncology and radiology, with the hope of 
driving advancements in these fields.

Tampa, FL, USA Issam El Naqa  
Richmond, VA, USA  Martin J. Murphy   

Preface to the Second Edition
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1What Are Machine and Deep Learning?

Issam El Naqa and Martin J. Murphy

1.1  Overview

A machine or a deep learning algorithm is a computational process that uses input 
data to achieve a desired task without being literally programmed (i.e., “hard 
coded”) to produce a particular outcome. These algorithms are in a sense “soft 
coded” in that they automatically alter or adapt their architecture through repetition 
(i.e., experience) so that they become better and better at achieving the desired task. 
The process of adaptation is called training, in which samples of input data are 
provided along with desired outcomes. The algorithm then optimally configures 
itself so that it cannot only produce the desired outcome when presented with the 
training inputs, but can generalize to produce the desired outcome from new, previ-
ously unseen data. This training is the “learning” part of machine and deep learning 
processes. The training does not have to be limited to an initial adaptation during a 
finite interval. As with humans, a good algorithm can practice “lifelong” learning as 
it processes new data and learns from its mistakes.

There are many ways that a computational algorithm can adapt itself in response 
to training. The input data can be selected and weighted to provide the most decisive 
outcomes. The algorithm can have variable numerical parameters that are adjusted 
through iterative optimization. It can have a network of possible computational 
pathways that it arranges for optimal results. It can determine probability distribu-
tions from the input data and use them to predict outcomes.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83047-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-83047-2_1#DOI
mailto:ielnaqa@med.umich.edu
mailto:Issam.elnaqa@moffitt.org
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The ideal of machine learning is to emulate the way that human beings (and other 
sentient creatures) learn to process sensory (input) signals in order to accomplish a 
goal. Traditionally, a machine learning algorithm would feed computer-extracted 
human-engineered patterns (features) derived from the raw data by, e.g., computer 
vision methods, to an algorithm to perform a designated learning task; a process 
colloquially referred to now as shallow learning. This is in contrast to a special 
subcategory of machine learning that allows for combined data representation (e.g., 
feature extraction) and task learning (e.g., classification or detection) known as deep 
learning. Conceptually, deep learning comprises learning methods that are provided 
raw data and which then automatically discover the features needed for detection or 
classification using the designated machine learning approach. In either learning 
process, the goal could be, e.g., a task in pattern recognition, in which the learner 
wants to distinguish apples from oranges. Every apple and orange is unique, but we 
are still able (usually) to tell one from the other. Rather than hard code a computer 
with many, many exact representations of apples and oranges, or with an exhaustive 
set of defining characteristics, it can be programmed to learn to distinguish them 
through repeated experience with actual apples and oranges. This is a good example 
of supervised learning, in which each training example of input data with features 
(color, shape, texture, etc.) is paired with its known classification label (apple or 
orange). It allows the learner to deal with similarities and differences when the 
objects to be classified have many variable properties within their own classes but 
still have fundamental qualities that identify them. Most importantly, the successful 
learner should be able to recognize an apple or an orange that it has never seen before.

A second type of machine learning is the so-called unsupervised algorithm. This 
might have the objective of trying to throw a dart at a bull’s-eye. The device (or 
human) has a variety of degrees of freedom in the mechanism that controls the path 
of the dart. Rather than try to exactly program the kinematics a priori, the learner 
practices throwing the dart. For each trial, the kinematic degrees of freedom are 
adjusted so that the dart gets closer and closer to the bull’s-eye. This is unsupervised 
in the sense that the training doesn’t associate a particular kinematic input configu-
ration with a particular outcome. The algorithm finds its own way from the training 
input data. Ideally, the trained dart thrower will be able to adjust the learned kine-
matics to accommodate, for instance, a change in the position of the target.

A third type of machine learning is semi-supervised learning, where part of the 
data is labeled, and other parts are unlabeled. In such a scenario, the labeled part can 
be used to aid the learning of the unlabeled part. This kind of scenario lends itself to 
most processes in nature and more closely emulates how humans develop their skills.

A fourth type of machine learning is reinforcement learning, where the algo-
rithm learns to map inputs into optimized actions, i.e., goal-oriented tasks.

These algorithms currently represent the main categories of machine/deep learn-
ing, with supervised learning being the most common type in oncology, medical 
physics, and radiology with applications ranging from detection to diagnosis, drug 
discovery, and therapeutic interventions. However, several techniques are emerging 
to relieve the burden and cost of data labeling in supervised learning, including: the 
semi-supervised approach mentioned above, transfer learning (using knowledge 
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from other domains, such as natural images when learning medical ones), active 
learning (an interactive approach with human beings involved), and more recently 
weak supervised learning, where the labels are assumed to be imprecise or noisy.

There are two particularly important advantages to a successful algorithm. First, 
it can substitute for laborious and repetitive human effort. Second, and more signifi-
cantly, it can potentially learn more complicated and subtle patterns in the input data 
than the average human observer is able to do. Both of these advantages are impor-
tant to medical physics, oncology, and radiology applications. For example, the 
daily contouring of tumors and organs at risk during treatment planning is a time- 
consuming process of pattern recognition that is based on the observer’s familiarity 
and experience with the appearance of anatomy in diagnostic images. That familiar-
ity, though, has its limits, and consequently, there are uncertainties and inter- 
observer variability in the resulting contours. It is possible that an algorithm for 
contouring can pick up subtleties of texture or shape in one image or simultaneously 
incorporate data from multiple sources or blend the experience of numerous observ-
ers and thus reduce the uncertainty in the contour.

The complexity of medical physics, oncology, and radiology processes can vary 
and may involve several stages of sophisticated human–machine interactions and 
decision- making, which would naturally invite the use of machine/deep learning 
algorithms to optimize and automate these processes, including but not limited to 
computer-aided detection, diagnosis, triaging, radiation physics quality assurance, 
contouring and treatment planning, image-guidance, respiratory motion manage-
ment, treatment response modeling, and treatment outcomes prediction.

1.2  Background

Machine learning is a category of computer algorithms that are able to emulate 
some aspects of human intelligence. It draws on ideas from different disciplines 
such as artificial intelligence, probability and statistics, computer science, informa-
tion theory, psychology, control theory, and philosophy [1–3]. The relationship 
between artificial intelligence, machine learning, and deep learning is depicted in 
Fig. 1.1 [4]. This technology has been applied in such diverse fields as pattern rec-
ognition [3], computer vision [5], spacecraft engineering [6], finance [7], entertain-
ment [8, 9], ecology [10], computational biology [11, 12], and biomedical and 
medical applications [13, 14]. The most important property of these algorithms is 
their distinctive ability to learn the surrounding environment from input data with or 
without a teacher [1, 2].

Historically, the inception of machine learning can be traced to the seventeenth 
century and the development of machines that can emulate human ability to add and 
subtract by Pascal and Leibniz [15]. In modern history, Arthur Samuel from IBM 
coined the term “machine learning” and demonstrated that computers could be pro-
grammed to learn to play checkers [16]. This was followed by the development of 
the perceptron by Rosenblatt as one of the early neural network architectures in 
1958 [17]. However, early enthusiasm about the perceptron was dampened by the 
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observation made by Minsky that the perceptron classification ability is limited to 
linearly separable problems and not common nonlinear problems such as a simple 
XOR logic [18]. A breakthrough was achieved in 1975 by the development of the 
multilayer nonlinear perceptron (MLP) by Werbos [19]. This was followed by the 
development of decision trees by Quinlan in 1986 [20] and support vector machines 
by Cortes and Vapnik [21]. Ensemble machine learning algorithms, which combine 
multiple learners using boosting of weak learners or bagging (model averaging), 
were subsequently proposed, including Adaboost [22] and random forests [23]. 
More recently, distributed multilayered learning algorithms such as convolutional 
neural networks (CNN) have emerged under the notion of deep learning [24]. These 
algorithms are able to learn good representations of the data that make it easier to 
automatically extract useful information when building classifiers or other predic-
tors, compared to conventional machine learning algorithms [25] as discussed fur-
ther below.

1.3  Machine Learning Definition

The field of machine learning has received several formal definitions in the litera-
ture. Arthur Samuel in his seminal work defined machine learning as “a field of 
study that gives computers the ability to learn without being explicitly programmed” 
[16]. Using a computer science lexicon, Tom Mitchell presented it as “A computer 
program is said to learn from experience (E) with respect to some class of tasks (T) 
and performance measure (P), if its performance at tasks in T, as measured by P, 
improves with experience E” [1]. Ethem Alpaydin in his textbook defined machine 

Deep Learning
(data abstraction with

learning representation,
e.g., CNN)

Artificial Intelligence
(humanized systems able

to perform intelligent
tasks, e.g., autonomous

vehicle, CADe, x)

Machine Learning
(computer algorithms

perform prediction tasks
without being explicitly

programmed, e.g., decision
trees, neural networks,

support vector machines,...)

Fig. 1.1 Venn diagram of 
the relationship between 
artificial intelligence, 
machine learning, and deep 
learning from [4]
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learning as the field of “Programming computers to optimize a performance crite-
rion using example data or past experience” [2]. These various definitions share the 
notion of coaching computers to intelligently perform tasks beyond traditional num-
ber crunching by learning the surrounding environment through repeated examples. 
The various conventional machine learning algorithms will be reviewed in Chap. 3.

1.4  Deep Learning Definition

Deep learning (DL), as noted earlier, comprises a subcategory of machine learning 
that deals with representation learning, where raw information or data are fed 
directly into the algorithm, which can then automatically discover the underlying 
patterns (features) needed for the detection or classification task [26]. Conceptually, 
it can be applied to any machine learning technology as depicted in Fig. 1.2, but has 
been practically shown to be most effective currently with deep neural networks 
methods [27, 28], which will be thoroughly discussed in Chap. 4.

1.5  Learning from Data

The ability to learn through input from the surrounding environment, whether it is 
playing checkers or chess games, or recognizing written patterns, or solving the 
daunting problems in medical physics, oncology, or radiology, is the key to a suc-
cessful machine learning application. Learning is defined in this context as estimat-
ing dependencies from data [29].

The fields of data mining and machine learning are intertwined. Data mining 
utilizes machine learning algorithms to interrogate large databases and discover hid-
den knowledge in the data, while many machine learning algorithms employ data 

Feature
extractor

Features
Detector/
Classifier

Output imaging
data

Input imaging
data

Deep learning process

Deep learning algorithm

Conventional “shallow” learning process

Fig. 1.2 Conventional “shallow” machine learning (top) versus deep learning algorithms, where 
image data representation and classification are handled within the same framework
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mining methods to preprocess the data before learning the desired tasks [30]. 
However, it should be noted that machine learning is not limited to solving database- 
like problems but also extends into solving complex artificial intelligence chal-
lenges by learning and adapting to a dynamically changing situation, as is 
encountered in a busy radiation oncology practice, for instance.

Machine/deep learning has both engineering science aspects such as data struc-
tures, algorithms, probability and statistics, and information and control theory and 
social science aspects that draw on ideas from psychology and philosophy.

1.6  Overview of Machine and Deep Learning Approaches

Machine or deep learning can be divided according to the nature of the data labeling 
into supervised, unsupervised, semi-supervised, and reinforcement learning as 
shown in Fig. 1.3. Supervised learning is used to estimate an unknown input-output 
mapping from known input-output samples, where the output is labeled (e.g., clas-
sification and regression). In unsupervised learning, only input samples are given to 
the learning system (e.g., clustering and estimation of probability density function). 
Semi-supervised learning is a combination of both supervised and unsupervised 
where part of the data is partially labeled and the labeled part is used to infer the 
unlabeled portion (e.g., text/image retrieval systems). In reinforcement learning, the 
machine learning algorithm aims to control learning by accommodating a feedback 
system, in which an agent attempts to take a sequence of actions that may maximize 
a cumulative reward such as winning a game of checkers, for instance [31]. This 
kind of approach is particularly useful for adaptive or sequential decision-making 
applications as will be discussed in Chap. 19.
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Fig. 1.3 Categories of machine learning algorithms according to training data nature
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From a concept learning perspective, machine learning can be categorized into 
transductive and inductive learning [32]. Transductive learning involves the infer-
ence from specific training cases to specific testing cases using discrete labels as in 
clustering or using continuous labels as in manifold learning. On the other hand, 
inductive learning aims to predict outputs from inputs that the learner has not 
encountered before. Along these lines, Mitchell argues for the necessity of an induc-
tive bias in the training process to allow for a machine learning algorithm to gener-
alize beyond unseen observation [33].

From a probabilistic perspective, machine learning algorithms can be divided 
into discriminant or generative models. A discriminant model measures the condi-
tional probability of an output given typically deterministic inputs, such as neural 
networks or a support vector machine. A generative model is fully probabilistic 
whether it is using a graph modeling technique such as Bayesian networks, or not, 
as in the case of naïve Bayes.

1.7  Quantifying the Data and Learning Objectives

The first step in the execution of a machine learning algorithm is the identification 
of the salient characteristics of the process to be emulated or the entity to be recog-
nized or classified. These characteristics must necessarily be quantitative because 
this is, after all, a computational problem. The characteristics are extracted from the 
raw input data and then assembled into a “feature vector” that is presented to the 
algorithm. The extraction almost invariably involves data compression to avoid 
completely overwhelming the subsequent computational steps. For example, when 
we look at an image, we don’t see individual pixels, we see recognizable structures. 
The art of feature extraction is to make the algorithm “see” structures and traits in 
the input data. The smaller the feature vector, the better, but it is critical that it be 
adequate to accurately represent the data and learning objectives. The identification 
and quantification of the most useful features is a fundamental part of the art of 
designing a machine learning algorithm, which has recently been automated in the 
context of deep learning.

In object classification (e.g., apples and oranges), the features could be empirical 
attributes that are directly quantifiable, such as dimensions, weight, density, etc., or 
indirectly quantifiable, such as color, texture, or smell. The indirect features need to 
be preprocessed further to convert them to numerical measures.

Formal features can be extracted via data transformation or reduction techniques. 
If the raw input data have many, many discrete elements, such as pixel values in an 
image, then using the entire image as the feature vector would have prohibitive 
computational overhead. However, if those elements are not random, then the size 
of the input feature vector can be dramatically reduced with minimal loss by meth-
ods of dimensionality reduction and compression such as principal component 
analysis (PCA) or Fourier analysis. PCA transforms a complex set of correlated 
data elements into a set of maximally uncorrelated principal component basis vec-
tors and their associated coefficients. A linear combination of the basis vectors and 
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coefficients reproduces the original data set with an accuracy that is determined by 
the number of vectors that are retained from the analysis. In highly correlated data, 
a very small number of PCA vectors and coefficients can be sufficient to character-
ize its structure. The most significant coefficients are then collected into the feature 
vector. Fourier decomposition of the input data into a set of Fourier basis vectors 
and coefficients achieves the same goal, but the difference is that the PCA method 
requires an initial set of representative training examples to determine the principal 
components, while Fourier decomposition can be done case by case using fixed 
basis vectors. The Fourier transform method lends itself naturally to image com-
pression, as is well known from the JPEG algorithm, but it can require many more 
coefficients to capture salient image content than the PCA method. Both of these 
methods lend themselves naturally to pattern recognition and classification algo-
rithms such as neural networks and support vector machines. Formal feature extrac-
tion or representation also lends itself naturally to deep learning applications, which 
automates the process by functioning as the interface between the raw input data 
and the learning algorithm.

1.8  Application in Biomedicine

Machine learning algorithms have witnessed increased use in biomedicine, starting 
naturally in neuroscience and cognitive psychology through the seminal work of 
Donald Hebb in his 1949 book [34] developing the principles of associative or 
Hebbian learning as a mechanism of neuron adaptation and the work of Frank 
Rosenblatt developing the perceptron in 1958 as an intelligent agent [17]. This was 
shortly followed by Ledley and Lusted in their 1959 paper, where they anticipated 
the role of a probabilistic logic-based approach to understand and support physi-
cians’ reasoning [35]. An early major machine learning initiative was the MYCIN 
project at Stanford in the 1970s, which was a rule-based system to identify bacteria 
types that may cause infectious diseases [36], achieving an acceptability rating of 
65% from a panel of experts [37]. Recent reviews of the application of machine 
learning in biomedicine and medicine can be found in [12, 13, 38, 39].

1.9  Applications in Radiology and Oncology

Among the earliest adoptions of machine learning algorithms was in the field of 
radiological and medical image analysis. Winsberg et al. reported in 1967 on a com-
puter detection algorithm for radiographic abnormalities in mammograms [40]. 
Lodwick et al. presented a roentgenograms concept for analyzing bone and lung 
cancer images [41, 42] and Meyers et al. developed an automated computer analysis 
of cardiothoracic ratios [43]. However, the major thrust happened in the 1980s, 
when tremendous developments occurred in computer-aided detection (CADe) and 
computer-aided diagnosis (CADx), providing radiologists with computer output as 
a “second opinion” to aid in making final decisions [44–49]. These CAD systems 
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utilized image feature-based analysis for the detection of microcalcifications in 
mammogram images [50–53] and lung nodules in digital chest radiographs [54]. 
This expanded into every area in radiology, in the form of decision support systems. 
In the field of oncology and specifically, radiation oncology, early applications of 
machine learning have focused on treatment planning and predicting normal tissue 
toxicity [55–57], but its application has since branched into almost every part of the 
field, including tumor response modeling, radiation physics quality assurance, con-
touring and treatment planning, image-guided radiotherapy, and respiratory motion 
management. Examples of the application of machine and deep learning will be the 
main subject of the second half of this book.

1.10  Ethical Challenges in the Application 
of Machine Learning

The application of machine learning in medicine has not been without challenges 
and even controversies. This is understandable given the data-driven nature of these 
algorithms and caveats related to data sharing, provenance, patient privacy, and the 
nature of medical data acquisition, which not only vary in technologies and param-
eters but also shift over time with new developments. Moreover, issues related to 
learning bias [58] and adversarial examples [60, 61] need to be accounted for. For 
instance, a machine learning algorithm developed for predicting the risk of pneumo-
nia counter-intuitively suggested that patients with pneumonia and asthma would be 
at a lower risk of death than patients with pneumonia but without asthma [59]. 
Similar controversial examples were noted in the case of skin cancer risk prediction, 
where the presence of a ruler in the image may be a cue for the ML algorithm of 
high risk [62] or the appearance of a tube in a chest X-ray being indicative of severe 
lung disease [63]. These examples and others stress the importance of data quality 
and context when training and applying these powerful tools.

These challenges have led the Food and Drug Administration (FDA) in the 
United States, the European Union, and other international bodies to advocate for 
lawful, ethical and robust application from technological and societal perspectives. 
Towards this goal there have been shifts towards developing more explainable/inter-
pretable machine learning algorithms [64], which would allow for better transpar-
ency, oversight, and accountability.

1.11  Steps to Machine Learning Heaven

For the successful application of machine learning in general and in medical phys-
ics, radiology and oncology in particular, one first needs to properly characterize the 
nature of the problem, in terms of the input data and the desired outputs. Secondly, 
despite the robustness of machine learning to noise, a good model cannot substitute 
for bad data, keeping in mind that models are primarily built on approximations, 
and it has been stated that “All models are wrong; some models are useful (George 
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Box).” Additionally, this has been stated as the GIGO principle, garbage in garbage 
out as shown in Fig. 1.4 [65].

Thirdly, the model needs to generalize beyond the observed data into unseen 
data, as indicated by the inductive bias mentioned earlier. To achieve this goal, the 
model needs to be kept as simple as possible but not simpler, a property known as 
parsimony, which follows from Occam’s razor that “Among competing hypotheses, 
the hypothesis with the fewest assumptions should be selected.” Analytically, the 
complexity of a model could be derived using different metrics such as Vapnik–
Chervonenkis (VC) dimension discussed in Chap. 2 for instance [32]. However, 
deep learning algorithms with their large number of layers for learning data repre-
sentation and performing model prediction in the same architecture, may present a 
future challenge to this classical notion, but the overall objective remains the same, 
that is, to achieve generalizability to out-of-sample data, which should be carefully 
evaluated as discussed in Chap. 6. Finally, a major limitation in the adoption of 
machine learning in general and deep learning in particular by the larger medical 
community is the “black box” stigma and the inability to provide an intuitive inter-
pretation of the learned process that could help clinical practitioners better under-
stand their data and trust the model predictions. This is an active and necessary area 
of research that requires special attention from the machine learning community 
working in biomedicine. Solutions such as deriving proxy models, developing 
attention maps, providing disentangled representation or learning with known oper-
ators have been emerging to create a more interpretable/explainable machine learn-
ing paradigm [66–70].

1.12  Conclusions

Machine and deep learning present computer algorithms that are able to learn from 
the surrounding environment to optimize the solution for the task at hand. It builds 
on expertise from diverse fields such as artificial intelligence, probability and statis-
tics, computer science, information theory, and cognitive neuropsychology. Machine 
learning algorithms can be categorized into different classes according to the nature 
of the data, its representation, the learning process, and the model type. Machine 
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learning has a long history in biomedicine, particularly in radiology, but its applica-
tion in medical physics and oncology is in its infancy, with high potential and prom-
ising future to improve the safety and efficacy of clinical care and advance cancer 
research discovery.
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2Computational Learning Theory

Issam El Naqa and Jen-Tzung Chien

2.1  Introduction

In many computational learning problems, we are given a relatively small number 
of observed data samples from the general population and asked to understand the 
functional dependencies and make decisions or perform tasks based on the data 
accordingly. In standard statistics introduced by Ronald Fisher in the 1920–1930s 
and in his classic textbooks [1, 2], learning dependencies are based on the concepts 
of sufficiency and ancillary statistics, which requires representing dependencies by 
a finite set of parameters and then estimating these using maximum likelihood or 
Bayesian techniques. However, a paradigm shift in statistical learning theory was 
introduced in the 1960s by Vladimir Vapnik and his colleagues in which the param-
eter estimation restrictions imposed by Fisher’s paradigm are replaced by knowl-
edge of some general properties of the set of functions to which the unknown 
dependencies belong. The determination of the general conditions for estimating 
the unknown data dependency, the description of the inductive learning of relation-
ships, and the development of algorithms to implement these principles are the sub-
jects of the modern computational learning theory [3].

In this framework of learning theory, the focus is on small sample size statistics, 
in which a machine learning algorithm is trained on a subset of the data (training 
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data) that is used to identify the learning function to achieve the desired response of 
the task at hand and is built with the goal of predicting response to unseen data (out- 
of- sample or test data). This is a challenging task that poses several questions 
regarding which learning process we should select, what is the learning capacity of 
the algorithm selected, what are the expected errors or their bounds, under what 
conditions is successful learning possible or impossible, and under what conditions 
is a particular learning algorithm assured of learning successfully [3, 4]. These theo-
ries are further challenged in the context of deep learning as will be presented here. 
In this chapter, we will start by highlighting the differences between statistical anal-
ysis and statistical modeling. We will present the theoretical background for compu-
tational learning. Specifically, the frameworks for analyzing learning algorithms, 
namely, the probably approximately correct (PAC) and Vapnik–Chervonenkis (VC) 
theory, will be discussed. This is in addition to the specific deep learning context. 
Finally, practical methods for estimating learning generalization ability and model 
complexity will be presented.

2.2  Computational Modeling Versus Statistics

There is a common mix-up between statistical analysis and computational modeling 
of data. The objective of statistical analysis is to use statistics to describe data and 
make inferences on the population for hypothesis testing purposes; for instance, 
variable x is significant while variable y is not in explaining the observed clinical 
endpoint of interest. In the case of computational modeling, the objective is to pro-
vide an adequate description of dependencies in observation data and summarize its 
latent features for hypothesis generation as summarized in Fig. 2.1 [5].

Machine learning is a branch of computational modeling that inherited many of 
its properties and utilizes the statistical modeling techniques as part of its arsenal. 
For instance, machine learning models of quality assurance (QA) in radiation oncol-
ogy can capture many salient features in the data that may impact quality of 

Population

Hypothesis generation

Hypothesis testing

control
group
mean

treatment
group
mean

Inference

Feature extraction
Sample

Fig. 2.1 Computational modeling vs. statistical analysis. (Adapted from [5])

I. El Naqa and J.-T. Chien



19

delivered treatment and their possible interdependencies, which could be further 
tested for varying hypotheses for their severity and possible action levels to mitigate 
their effect. However, development of computational modeling techniques could be 
achieved using both deterministic and statistical methodologies. On the other hand, 
deep learning is a subcategory of machine learning, where the algorithm can learn 
the data representation from raw information (no human-engineered feature extrac-
tion is required), and subsequently conduct the learning task on these data.

2.3  Learning Capacity

Learning capacity or “learnability” defines the ability of a machine learning algo-
rithm to learn the task at hand in terms of model complexity and the number of 
training samples required to optimize a performance criteria. Using formal statisti-
cal learning taxonomy [6], assuming a training set Ξ of n-dimensional vectors, 

x i mi
n , := 1 , each labeled (by 1 or 0) according to a target function f which is 

unknown to the learner and called the target concept and is denoted by c, which 
belongs to the set of functions, C, the space of target functions as illustrated in 
Fig. 2.2. The probability of any given vector X being present in Ξ is P(X). The goal 
of the training is to guess a function, h(X) based on the labeled samples in Ξ, called 
the hypothesis. We assume that the target function is an element of a set H in the 
space of hypotheses. For instance, in our QA example, if we are interested in devel-
oping a treatment plan quality metric, we would have a list of input features X (e.g., 
energies, beam arrangements, monitor units) that is governed in our pool of treat-
ment plans with a certain joint probability density function P. Based on clinical 
experience, a set of these plans are considered to be good while others are bad, 
which would constitute the target concept (c) of interest with an unknown func-
tional form f that we aim to estimate. During the training process, we attempt to 
identify a hypothesis function h(X) that would approximate the mapping to c using 
varying possible machine learning algorithms, and the higher the overlap between 
our hypothesized mapping function and the target quality metric concept, the more 
successful the learning process is as indicated in the Venn diagram of Fig. 2.2.

c h

Instance space X

Where c
and h discharge

+

+

− −

−

Fig. 2.2 Illustration of 
learning concepts. (From 
Nilsson [6])
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There are two main theories that attempt to characterize the learnability of clas-
sical machine learning algorithms: the PAC and the VC theories as discussed below. 
The special context of deep learning will be discussed in a subsequent section.

2.4  PAC Learning

One method to characterize the learnability of a machine learning algorithm is by 
the number of training examples needed to learn a hypothesis h(X) as mentioned 
earlier. This could be measured by the probability of learning a hypothesis that is 
approximately correct (PAC). Formally, this could be defined as follows. Consider 
the concept class C defined over a set of instances X of length m and a learner L 
using hypothesis space H. C is PAC learnable by L using H.

If for all c ∈ C, distributions D over X, ε such that 0 < ε < 1/2 and δ such that 
0 < δ < 1/2, there is a learner L with probability at least (1 – δ) that will output a 
hypothesis h ∈ H such that error D(h) ≤ ε, in time that is polynomial in 1/ε, 1/δ, n, 
and size (c) [4]. For a finite hypothesis space H, the number of training examples 
(m) required to reduce the probability of error below a desired level δ is given by 
assuming a zero training error:

 
m H� � � �� �1

1
�

�ln ln /
 

(2.1)

This estimated number of training examples is sufficient to ensure that any con-
sistent hypothesis will be probably (with probability (1 – δ)) approximately (within 
error ε) correct. In the case the training error is not necessarily zero, the number of 
required training examples becomes:

 
m H� � � �� �1

2
1

2�
ln ln / �

 
(2.2)

It is recognized that such an estimate could be in practice an overestimate [4]. 
Another problem in PAC is that it includes the size of the hypothesis space H, which 
in practice could be unknown or infinite.

2.5  VC Dimension

An alternative approach to measure learnability that overcomes the limitations of 
PAC is to use Vapnik–Chervonenkis (VC) dimension [3]. The VC dimension mea-
sures the complexity of the hypothesis space H, not by the number of distinct 
hypotheses H as in PAC but rather by the number of distinct instances from X that 
can be completely discriminated using H. VC(H), of hypothesis space H defined 
over instance space X, is the size of the largest finite subset of X shattered by H. If 
arbitrarily large finite sets of X can be shattered by H, then VC(H) = ∞. This is noted 
that for any finite H, VC(H) ≤ log 2|H|. To see this, suppose that VC(H) = d. Then, H 
will require 2d distinct hypotheses to shatter d instances. Hence, 2d ≤ log 2|H|. This 
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is illustrated in Fig. 2.2. However, if the number of hypotheses far exceeds the num-
ber of training samples available, then we are faced with the phenomenon of curse 
of dimensionality. This curse or inability to learn and generalize with high- 
dimensional data has motivated the development of deep learning approaches [7], 
which will be discussed next.

2.6  Learning with Deep Learning

Deep learning (DL) as noted earlier is a subcategory of machine learning that deals 
with representation learning, where raw information or data are fed directly into 
algorithm, which can automatically discover the underlying patterns (or latent fea-
tures) needed for the detection or classification task [8]. Conceptually, this can be 
applied to any machine learning technology as was depicted in Fig. 1.2, but has 
been practically shown to be most effective currently with deep neural networks 
(DNNs) methods [9, 10]. DNN description and their architectures will be detailed 
in Chap. 4; here we focus on the underlying learning principles. One explanation is 
provided through the manifold learning hypothesis, where the interesting parts of 
the input occur only along a collection of manifolds with a small number of features 
and that the DNN learns how to represent the data in terms of the coordinates of 
such a manifold by transforming from one layer to the next as depicted in Fig. 2.3 
[7]. Another interpretation has focused on tensor factorization and how a positively 
homogeneous regularizer of the same degree as the network can lead to a global 
optimal solution in non-convex problems [11].

2.7  Model Complexity Analysis in Practice

Multivariate analysis often involves a large number of variables or features in the 
data samples [7]. The complexity of a learning model increases with the number of 
input features (i.e., the dimensionality of the input feature vector); therefore, it is 
desirable to focus on the most important features that characterize the observations. 
These are usually unknown. Therefore, practical dimensionality reduction or subset 
selection aims to find the “significant” set of features. Finding the best subset of 
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Fig. 2.3 Data sampled 
from a distribution in a 
two-dimensional space that 
is concentrated near a 
one-dimensional manifold, 
like a twisted string. The 
solid line indicates the 
underlying manifold that 
the learner (e.g., DNN) 
should infer [7]
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features is definitely challenging, especially in the case of nonlinear models. The 
objective is to reduce the model complexity, decrease the computational burden, and 
improve the generalizability on unseen data as explained earlier. A straightforward 
approach is to make an educated guess based on experience and domain knowledge 
and then apply feature transformation (e.g., principal component analysis (PCA)) 
[12–14] or sensitivity analysis by using the organized searches such as sequential 
forward selection or sequential backward selection or a combination of both [14, 
15]. A recursive elimination technique that is based on machine learning has been 
also suggested [16]. In this technique, the data set is initialized to contain the whole 
set, train the predictor (e.g., support vector machine (SVM) classifier) on the data, 
rank the features according to a certain criteria (e.g., the weight of the feature), and 
keep iterating by eliminating the lowest ranked one. It should be noted that the spe-
cific definition of model order changes depending on the functional form. It could 
be identified by the number of parameters in logistic regression, or by the number 
of neurons and layers in the case of neural networks (cf. Fig. 2.4), etc. However, in 
any of these forms, the model order creates a balance between the model complexity 
(increased model order) and the model ability to generalize to unseen data. Finding 
this balance is referred to in statistical learning theory as the bias–variance dilemma 
(see Fig. 2.5), in which an oversimple model is expected to underfit the data (large 
bias and small variance), whereas a too complex model is expected to overfit data 
(small bias and large variance) [17]. Hence, the objective is to achieve an optimally 
parsimonious model, i.e., a model with the correct degree of complexity to fit the 
data and also a maximum ability to generalize to new and unseen data sets, in other 
words to derive its VC dimension from the data itself. Practical approaches utilize 
information theoretic methods or statistical resampling as discussed below.
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Fig. 2.4 An example of 14 
dichotomies shattering 4 
points in 2D. (From 
Nilsson [6])
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2.7.1  Model Order Based on Information Theory

Information theory provides intuitive measures of model order optimality; among the 
most commonly used are Akaike information criteria (AIC) and the Bayesian infor-
mation criteria (BIC) [19]. AIC is an estimate of predictive power of a model, which 
includes both the maximum likelihood principle and a model complexity term that 
penalizes models with an increasing number of parameters (to avoid overfitting the 
data). BIC is derived from Bayesian theory, which results in a penalty term that 
increases linearly with the number of parameters. An example in modeling xerosto-
mia (dry mouth) in head and neck cancer post-radiotherapy is shown in Fig. 2.6.
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Fig. 2.5 This figure illustrates a common trade-off in model predictive power between prediction 
bias (average error) and prediction variance (square error). As model complexity increases, the 
average prediction error (bias) tends to decrease while the average square error tends to decrease. 
The point of optimal complexity tends to be near the point when average and square errors are of 
similar magnitude. (Reproduced with permission from Deasy and El Naqa [18])
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2.7.2  Model Order Based on Resampling Methods

Resampling techniques are used for model selection and performance comparison 
purposes to provide statistically sound results when the available data set is limited 
(which is almost always the case in oncology). We use two types of fit-then-validate 
methods: cross-validation methods and bootstrap resampling techniques. Cross- 
validation [14] uses some of the data to train the model and some of the data to test 
the model validity. The type we most often use is the “leave-one-out” cross- 
validation (LOO-CV) procedure (also known as the “jackknife”). In each LOO-CV 
iteration, all the data are used for training/fitting except for one data point left out 
for testing, and this is repeated so that each data point is left out exactly once. The 
overall success of predicting the left-out data is a quantitative estimate of model 
performance on new data sets. Bootstrapping [20] is an inherently computationally 
intensive procedure but generates more realistic results. Typically, a bootstrap 
pseudo-data set is generated by making copies of original data points and randomly 
selected with a probability of inclusion of 63%. The bootstrap often works accept-
ably well even when data sets are small or unevenly distributed. To achieve valid 
results, this process must be repeated many times, typically several hundred or thou-
sand times. Examples of applying these methods to outcomes modeling in radio-
therapy (cf. Fig. 2.7) can be found in our previous work [21] and are discussed in 
detail in [18].

2.8  Conclusions

In this chapter, we discussed some of the guiding principles of computational learn-
ing. Within the probably approximately correct (PAC) framework, we identify 
classes of hypotheses that can and cannot be learned from a polynomial number of 
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training examples and we define a natural measure of complexity for hypothesis 
spaces that allows bounding the number of training examples required for inductive 
learning. Within the mistake-bound framework, we examine the number of training 
errors that will be made by a learner before it determines the correct hypothesis [4]. 
The VC dimension offers an alternative approach for measuring learnability by esti-
mating the number of instances necessary to discriminate among hypotheses. We 
also discussed some of the underlying principles to explain the generalizability of 
deep learning algorithm via manifold learning or tensor factorization. Beside these 
theoretical approaches, we also presented practical methods based on information 
theory and statistical resampling for estimating model complexity. Resampling 
techniques such as cross-validation and bootstrapping are among the most-used 
methods in the literature and will be further discussed in the context of performance 
evaluation in Chap. 6.

References

 1. Fisher RA. Statistical methods for research workers. Edinburgh: Oliver and Boyd; 1925.
 2. Fisher RA. The design of experiments. Edinburgh: Oliver and Boyd; 1935.
 3. Vapnik VN. The nature of statistical learning theory. New York: Springer; 2000.
 4. Mitchell TM. Machine learning. New York: McGraw-Hill; 1997.
 5. Berry MJA, Linoff G. Data mining techniques: for marketing, sales, and customer relationship 

management. 2nd ed. Indianapolis, IN: Wiley; 2004.
 6. Nilsson NJ.  The mathematical foundations of learning machines. San Mateo: Morgan 

Kaufmann; 1990.
 7. Goodfellow I, Bengio Y, Courville A.  Deep learning. Adaptive computation and machine 

learning. Cambridge, MA: The MIT Press; 2016.
 8. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. 

Nature. 1986;323(6088):533–6. https://doi.org/10.1038/323533a0.
 9. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. 

Science. 2006;313(5786):504–7.
 10. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.

org/10.1038/nature14539.
 11. Haeffele BD, Vidal R. Global optimality in tensor factorization, deep learning, and beyond. In:  

arXiv e-prints; 2015.
 12. Guyon I, Elissee A.  An introduction to variable and feature selection. J Mach Learn Res. 

2003;3:1157–82.
 13. Dawson LA, Biersack M, Lockwood G, Eisbruch A, Lawrence TS, Ten Haken RK. Use of 

principal component analysis to evaluate the partial organ tolerance of normal tissues to radia-
tion. Int J Radiat Oncol Biol Phys. 2005;62:829–37.

 14. Kennedy R, Lee Y, Van Roy B, Reed CD, Lippman RP. Solving data mining problems through 
pattern recognition. Upper Saddle River, NJ: Prentice Hall; 1998.

 15. Härdle W, Simar L. Applied multivariate statistical analysis. Berlin/New York: Springer; 2003.
 16. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support 

vector machines. Mach Learn. 2002;46:389–422.
 17. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, infer-

ence, and prediction: with 200 full-color illustrations. New York: Springer; 2001.
 18. Deasy JO, El Naqa I.  Image-based modeling of normal tissue complication probability for 

radiation therapy. Cancer Treat Res. 2008;139:215–56.

2 Computational Learning Theory

https://doi.org/10.1038/323533a0
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539


26

 19. Burnham KP, Anderson DR.  Model selection and multimodal inference: a practical 
information- theoretic approach. 2nd ed. New York: Springer; 2002.

 20. Efron B, Tibshirani R. An introduction to the bootstrap. New York: Chapman & Hall; 1993.
 21. El Naqa I, Bradley JD, Lindsay PSE, Blanco AI, Vicic M, Hope AJ, et al. Multi-variable mod-

eling of radiotherapy outcomes including dose-volume and clinical factors. Int J Radiat Oncol 
Biol Phys. 2006;64:1275–86.

I. El Naqa and J.-T. Chien



27© Springer Nature Switzerland AG 2022
I. El Naqa, M. J. Murphy (eds.), Machine and Deep Learning in Oncology, 
Medical Physics and Radiology, https://doi.org/10.1007/978-3-030-83047-2_3

S. Lee (*) 
Department of Medical Physics, Memorial Sloan Kettering Cancer Center,  
New York, NY, USA
e-mail: lees14@mskcc.org 

I. El Naqa 
Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA 

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
e-mail: ielnaqa@med.umich.edu; Issam.elnaqa@moffitt.org

3Conventional Machine Learning 
Methods

Sangkyu Lee and Issam El Naqa

3.1  Introduction

Learning is defined in this context as estimating statistical dependencies from data. 
There are three common types of learning [1]: unsupervised, supervised, and rein-
forcement learning. In unsupervised learning, only input samples are given to the 
learning system (e.g., clustering and estimation of probability density function). 
Supervised learning is used to estimate an unknown (input, output) mapping from 
known (input, output) samples (e.g., classification and regression), where a teacher 
provides the output samples (labels). In reinforcement learning, the mapping is 
between input data of the environment and corresponding actions rather than labels. 
These concepts will be detailed in this chapter using conventional machine learning 
techniques, where features are first extracted from the raw data and then fed into the 
algorithm to learn the task at hand. Discussion of deep learning, where the algo-
rithm act directly on the raw data, will be presented in Chap. 4.
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3.2  Unsupervised Learning

3.2.1  Linear Principal Component Analysis

Suppose we have an oncology treatment data or images for a group of patients, 
some of whom developed a late complication and others who did not. For instance, 
in the case of prostate cancer radiotherapy, the data might include patient’s age and 
weight, diagnostic factors such as Gleason score, dose delivered to the planning 
target volume (PTV), dose to one or more critical structures, etc. We would like to 
know if there are patterns in these data that can predict for the complication. The 
first step is to reduce the data set to its most informative elements, i.e., features. 
Often there will be more than one datum that measures more or less the same thing. 
We would like to reduce the data vector to a smaller dimension containing only 
components that are clearly distinctive (i.e., uncorrelated with one another). To do 
this, we arrange the patient data in a matrix X so that each row and column represent 
one patient and a variable, respectively. As a pre-processing step, each column in 
the matrix X is normalized to zero mean and unity variance (z-score). Principal 
component analysis (PCA) is then applied to the normalized X to identify a set of 
principal components (PCs) which are given by:

 PC � �U VT TX �  (3.1)

where UΣVT is the singular value decomposition (SVD) of X. This is equivalent to 
transformation into a new coordinate system such that the greatest variance by any 
projection of the data would lie on the first coordinate (first PC), the second greatest 
variance on the second coordinate (second PC), and so on. For visualization pur-
poses with the PCA, the heterogeneous variables are typically normalized using 
z-scoring (zero mean and unity variance). The term variance explained, used in PCA 
plots (Fig. 3.1), refers to the variance of the data model about the mean prognostic 
input factor values. The data model is formed as a linear combination of its principal 
components. Thus, if the PC representation of the data explains the spread (vari-
ance) of the data about the full data mean, it would be expected that this PC repre-
sentation will capture enough information for modeling. Moreover, PCA analysis 
can provide an indication about class separability; however, it should be cautioned 
that PCA is an indicator and is not necessarily optimized for this purpose as super-
vised linear discriminant analysis, for instance [2].

Figure 3.1 shows three examples of PCA applied to patient data for three dif-
ferent prognostic challenges: prediction of xerostomia (dry mouth), esophagitis 
(esophagus inflammation), and pneumonitis (lung inflammation). The main pur-
pose of PCA in this case is to visualize a degree of separation between patients 
with and without complications. For the case of xerostomia, PCA revealed sev-
eral significant principal modes in the prognostic data, the first two of which 
accounted for only 60% of the total variance among the data components. 
However, the first two principal components already show a fairly clear distinc-
tion between the cases with and without xerostomia, meaning that the rest of the 
variance may not be relevant to the complication. In contrast, PCA reveals only 
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one strong principal mode for esophagitis and pneumonitis, i.e., the original data 
components are so highly correlated that PCA reduces them to a single principal 
component. The projected data do not demonstrate clear separation among cases, 
which calls for a nonlinear modeling approach such as kernel-based methods 
(see Sect. 3.3.4).
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Fig. 3.1 Projection of prognostic factors for xerostomia (top), esophagitis (middle), and radiation 
pneumonitis (bottom) into a two-dimensional space consisting of the first and second principal 
components (the right column). The left column shows variation explanation versus principle com-
ponent index. Linear separation in the xerostomia dataset is well demonstrated but not as much for 
the pneumonitis case (as seen from a wide class overlap). (Reproduced from El Naqa et al. [2])
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3.2.2  Kernel Principal Component Analysis

Kernel PCA is a nonlinear form of the principal component analysis by use of a 
kernel technique (see the upcoming section on support vector machine (SVM)). It is 
useful for detecting nonlinear behaviors in data that cannot be represented in terms 
of linear combination of the existing variables. The kernel trick effectively trans-
forms an input space into a higher-dimensional feature space in which nonlinear 
patterns can be made discoverable in a linear fashion (Fig. 3.2). This concept is 
analogous to mapping to higher dimensions in theoretical physics to identify unify-
ing frameworks of particle and natural forces behavior (e.g., string theory). However, 
the input space transformation does not need to be defined explicitly, as the PCA 
only requires the knowledge of a covariance matrix in the transformed space. The 
(i,j)-th component of a covariance matrix for the data x1, x2,..., xn can be computed 
directly from the kernel function k(⋅, ⋅):

 
K x x k x xij i j i j� � � � � � � �� �, ,  (3.2)

where Φ(x) denotes the input space transformation. K is then diagonalized to extract 
a set of principal components (PCs) and their corresponding eigenvalues. Kernel 
PCA becomes more computationally expensive than linear PCA when the number 
of samples exceeds input dimension. Nevertheless, when applied to problems con-
taining nonlinear patterns (e.g., handwriting), a nonlinear PCA could be more suit-
able than the linear one for reducing data dimension prior to a classification task [3].

3.2.3  Factor Analysis (FA)

Factor analysis (FA) aims at capturing common patterns of variance from observed 
variables. Similarly to PCA, factor analysis can be seen as a dimensionality reduc-
tion technique where a large number of observed variables are summarized into a 
much smaller number of latent variables, or factors. Both PCA and FA do so by 
reconstructing the variance/covariance matrix using linear combination of latent 
variables. However, the major difference between PCA and FA lies in the 

R2 R2

kernel PCAlinear PCA

k(x,y) = (x·y)dk(x,y) = (x·y)
F

Φ

Fig. 3.2 A cartoon describing the utility of kernel PCA in linearizing a nonlinear pattern by fea-
ture transformation Φ via a polynomial kernel. The dotted lines are contour lines of the same value 
of projection to the first principal component. (Reproduced from Scholkopf et al. [3])
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assumption made on the variance of variables. Factor analysis divides a variance of 
a variable into two components: (1) the variance that can be explained by linear 
combination of factors and (2) the variance unique to the respective variable and 
therefore cannot be explained by the factors. This can be expressed as:

 X WZ� � �� �  (3.3)

where X is a p × n matrix for 1,…,p observed variables, Z is a l × n matrix for 1,…,l 
factors, μ contains the means of the observed variables, and ε represents the variance 
unique to each variable. The p × l matrix W, called the loading, specifies the weighting 
factors for linear combination of the factors. In PCA, in its classical form, ε is assumed 
to be zero. In other words, it coerces the variance to be fully explained by latent vari-
ables without unique variance. Thus, PCA can be seen as a special case of FA.

There are two types of factor analysis. Exploratory factor analysis (EFA) sets the 
number of factors to be equal to the number of variables and allows any factors to 
be linked to any variables. It is performed at an exploratory stage, as the name sug-
gests, to observe the patterns of correlations between variables and constructs. In 
comparison, confirmatory factor analysis (CFA) tests the validity of the existing 
latent structure model (constructed based on prior knowledge or the results of EFA) 
to observation data. Unlike EFA, CFA does not allow a variable to be associated 
with more than one factor. The difference between EFA and CFA is illustrated in 
Figure 3.3.

Factor analysis is particularly useful for identifying distinct patterns of responses 
from survey or questionnaire data. It has been applied to studying patient-reported 
radiotherapy outcomes in a form of questionnaires [4–7]. For example, Thor et al. 
[7] used factor analysis to identify 8 symptom domains from the Late Effects of 
treatment in Normal Tissue (LENT) questionnaire data from prostate patients, and 
identified redundant or irrelevant questions that could be removed for streamlining 
the toxicity reporting process.
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Variable 4

Variable 3

ε1

ε2

ε4

ε3

Factor 1

Factor 2

Variable 1

Variable 2

Variable 4

Variable 3

ε1

ε2

ε4

ε3

Fig. 3.3 Illustration for exploratory (left) and confirmative (right) factor analyses using 4 vari-
ables and 2 factors. Unique variance is indicated as ε
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3.2.4  Clustering

Cluster analysis refers to detection of collective patterns in data based on similarity 
criteria. It can be performed either in a supervised or unsupervised fashion. Grouping 
data points into clusters is useful in several ways. First, it can provide intuitive and 
succinct representation of the nature of data prior to major investigation. Secondly, 
clustering can be applied to compressing complex data distribution into a group of 
vectors corresponding to cluster centroids (vector quantization).

The K-means clustering is one of the most popular clustering methods. It begins 
with randomized partitions with the given number (K) of clusters. The partitions are 
then iteratively refined by the following steps: (1) an assignment step (reassignment 
of the cluster membership of each data point based on a distance to cluster cen-
troids) and (2) an update step (recalculation of cluster centroids as a geometric mean 
of the updated membership). The Minkowski distance between the d-dimensional 
vectors a and b, also known as a Lp norm, is used as a measure of proximity:
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(3.4)

The widely used Euclidean and Manhattan distance refer to the Minkowski dis-
tance at p = 2 and p = 1, respectively.

The K-means gained popularity thanks to its simplicity and fast convergence [8]. 
One of the drawbacks of this algorithm is its tendency to converge to local minima 
when initial partitions are not carefully chosen [8]. This can be partially overcome 
by introducing seeding heuristics such as the K++ means algorithm by Arthur and 
Vassilvitskii [9]. Furthermore, the original K-means requires the number of clusters 
(K) to be given a priori. The choice can either be made based on domain knowledge 
or optimized in data in a cross-validated fashion. The optimization method employs 
for an objective function the Bayesian information criteria (BIC) [10] or the mini-
mum description length (MDL) [11] that penalizes the larger number of clusters.

Another clustering algorithm gaining popularity is a neural network-derived 
method called a self-organizing map (SOM) or a Kohonen map [12]. In a SOM, 
distinct patterns in input data are represented by nodes, which are typically arranged 
in a two-dimensional hexagonal or rectangular grid for better visualization. Each 
node is assigned with its location in the grid and a vector of weights on input vari-
ables. The learning algorithm begins with randomizing node weights. Then, one 
training example is sampled from the training set and the node at the closest dis-
tance from it (Minkowski metrics can be used) is identified as a best matching unit 
(BMU). The weight vectors for the BMU and the nodes in its vicinity are adjusted 
to decrease the distance to the training example according to the following update 
formula:

 
w w w w x wv v v i vt t t t t t�� � � � � � � � � � � � �� � � � �� �1 � � BMU  (3.5)

where wv (t) is a weight vector for a node v at iteration t and xi is the i-th input 
sample. The magnitude of the update is determined by the factors that depend on the 
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distance from the BMU |wBMU(t) − wv(t)|—and the number of iteration (t). A win-
dow function (Λ) is the highest when v = BMU and tapers off to zero as a node goes 
farther away from the BMU. It ensures the nodes will be topologically ordered 
(neighboring nodes have similar weight patterns). The learning rate, α(t), typically 
decreases with iterations to ensure convergence. After the learning is repeated 
through all the training samples, the nodes tend to clump toward the weights that 
appears in input patterns frequently (topological ordering). A SOM has been shown 
useful in some areas such as speech recognition, linguistics, and robot control 
(Fig. 3.4).

Hierarchical clustering is capable of building hierarchical layers of clusters. In 
contrast to the previous two algorithms, a user does not have to specify the number 
of clusters. Clusters can be built by setting each individual sample as a cluster and 
merging a pair of cluster at each iteration (agglomerative clustering). In this case, 
the two clusters to be merged are determined based on a user-defined similarity 
metric—the similarity between two clusters can be based on the most similar pair of 
samples (single linkage), most dissimilar pair (complete linkage), or the total vari-
ance within the merged cluster (Ward’s method). The less commonly used way is to 
start with the entire samples in a single cluster and split one cluster into two over 
iterations (divisive clustering). The same principle can be applied to cluster vari-
ables, instead of samples (can be easily achieved by transposing the data matrix). 
The result of the hierarchical clustering is visualized in a binary tree called a den-
drogram (Fig. 3.5) In this diagram, each sample is represented as a terminal node, 
and formation of a cluster is shown in edges. Hierarchical cluster provides visual 
insights on how many salient groups among samples or variables could be present. 
However, computational time increases quadratically in terms of sample size, which 
makes it slower than k-means.
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Fig. 3.4 Self-organizing map learned from natural Finnish speech analysis by Kohonen [12]. 
Each node represents one acoustic unit of speech called a phoneme
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Another popular clustering technique is the t-distributed Stochastic Neighbor 
Embedding (t-SNE) algorithm, which allows for visualization of data in higher- 
dimensional space as in PCA and KPCA. However, in t-SNE a probability distribu-
tion is constructed where similar objects are modeled by nearby points and dissimilar 
objects are modeled by distant points with corresponding probability using metrics 
such as Euclidean distance or more commonly the Kullback–Leibler (KL) diver-
gence [13]. The t-SNE has been applied to for identifying breast lesions from ultra-
sound/MRI images [14].

Many challenges in bioinformatics are framed as a clustering problem, such as 
identifying a group of genes showing similar patterns of expression under certain 
conditions or diseases. A work by Svensson et  al. [15] is a good example from 
radiotherapy toxicity modeling. They grouped 1182 candidate late toxicity marker 
genes into two groups using their expression patterns in lymphocytes after radia-
tion, although the grouping did not correlate with toxicity status. In contrast, a SOM 
of radiation pneumonitis risk factors built by Chen et al. [16] showed that grouping 
patterns among the factors can be exploited for predicting the toxicity with decent 
accuracy (AUC = 0.73). Hierarchical clustering has been adopted in many radiomic 
studies to identify a group of correlated or redundant radiomic features [17–19].
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Fig. 3.5 A dendrogram for the hierarchical clustering applied to the R built-in dataset mtcars. 
Similarity measure is represented as the height of a branch
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3.3  Supervised Learning

3.3.1  Logistic Regression

In treatment outcomes modeling, the response will usually follow an S-shaped 
curve. This suggests that models with sigmoidal shape are more appropriate to use 
[20–27]. A commonly used sigmoidal form is the logistic model, which also has 
nice numerical stability properties. The logistic model is given by [28, 29]:
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(3.6)

where n is the number of cases (patients) and x is a vector of the input variable val-
ues used to predict f(xi) for the outcome yi of the ith patient. The f(⋅) is referred to as 
the logic transformation. The “x-axis” summation g(xi) is given by:
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(3.7)

where s is the number of model variables and the β’s are the set of model coeffi-
cients that are determined by maximizing the probability that the data gave rise to 
the observations (i.e., the likelihood function). Many commercially available soft-
ware packages, such as SAS, SPSS, and Stata, provide estimates of the logistic 
regression model coefficients and their statistical significance. The results of this 
type of approach are not expressed in closed form as above, but instead, the model 
parameters are chosen in a stepwise fashion to define the abscissa of a regression 
model as shown in Fig. 3.6. However, it is the analyst’s responsibility to test for 
interaction effects on the estimated response, which can potentially be corrected by 
adding cross terms to Eq. (3.6). However, this transformation suffers from limited 
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Fig. 3.6 Sigmoidally 
shaped response curves 
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learning capacity. In such a model, it is the user’s responsibility to determine 
whether interaction terms or higher order terms should be added. A solution to ame-
liorate this problem is offered by applying artificial intelligence methods.

3.3.2  Feed-Forward Neural Networks (FFNN)

Neural networks are described as adaptive massively parallel-distributed computa-
tional models that consist of many nonlinear elements arranged in patterns similar 
to a simplistic biological neuron network. A typical neural network architecture is 
shown in Fig. 3.7.

Neural networks have been applied successfully to model many different types 
of complicated nonlinear processes, including many pattern recognition problems 
[31]. A three-layer FFNN network would have the following model for the approxi-
mated functional:

 
f bTx y w� � � �� � � �2 2

 (3.8)

where v is a vector, the elements of which are the output of the hidden neurons, i.e.,

 
v s bT

i� �� �� � � �x w 1 1

 (3.9)

where x is the input vector and w(j) and b(j) are the interconnect weight vector and 
the bias of layer j, respectively, j = 1,2. In the FFNN, the activation function s(⋅) 
is usually a sigmoid, but radial basis functions were also used [32]. The FFNN 
could be trained in two ways: batch mode or sequential mode. In the batch mode, 
all the training examples are used at once; in sequential mode, the training 
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(hidden) layer(s), and an 
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examples are presented on a pattern basis, in the order that is randomized from 
one epoch (cycle) to another. The number of neurons is a user-defined parameter 
that determines the complexity of the network; the larger the number of neurons, 
the more complex the network would be. The number is determined during the 
training phase.

3.3.3  General Regression Neural Networks (GRNN)

The GRNN [33] is a probabilistic regression model based on neural network archi-
tecture. It is characterized as non-parametric, which means that it does not require 
any pre-determined functional form (e.g., polynomials). Instead, it estimates the 
joint density of input variables x and a target y from training data. The regression 
output using the GRNN is obtained by taking the expectation value of y for a given 
observation X and the joint density g(x, y):
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The joint density g(x, y) is estimated from training examples Xi and yi via the 
Parzen estimator where the density is regarded as the superposition of Gaussian 
kernels centered at the observation points with a spread σ. The resulting form of the 
regression function is:
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(3.11)

where Di i i
2 � �� � �� �X X X X

T
, denoting the Euclidean distance between the test-

ing data X and the i-th training data Xi.
The GRNN is fairly simple to train, with only the Gaussian width σ to be tuned. 

Thus, implementation of the GRNN does not require an optimization solver to 
obtain the weights, as in the case of FFNN. However, the output is obtained as a 
weighted sum of all the training samples, which could make it less efficient during 
running time. This could be improved by performing cluster analysis on training 
data (see Sect. 3.2.3) to compress it into a few cluster centers so that the metric Di 
can be computed only between those center points and a testing example. The 
computational speed can also benefit from parallelized neural network implemen-
tation since each summation can be performed independently using synapses and 
an exponential activation function. In our previous work, we demonstrated that 
GRNN can outperform traditional FFNN in radiotherapy outcomes predic-
tion [34].
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3.3.4  Kernel-Based Methods

Kernel-based methods and its most prominent member, support vector machines 
(SVMs), are universal constructive learning procedures based on the statistical 
learning theory [35]. For discrimination between patients who are at low risk versus 
patients who are at high risk of radiation therapy, the main idea of the kernel-based 
technique would be to separate these two classes with hyper-planes that maximizes 
the margin between them in the nonlinear feature space defined by implicit kernel 
mapping. The optimization problem is formulated as minimizing the following cost 
function:
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subject to the constraints:
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where w is a weighting vector and Φ(⋅) is a nonlinear mapping function. The ζi 
represents the tolerance error allowed for each sample being on the wrong side of 
the margin. Note that minimization of the first term in Eq. (3.12) increases the sepa-
ration (improves generalizability) between the two classes, whereas minimization 
of the second term (penalty term) improves fitting accuracy. The trade-off between 
complexity and fitting error is controlled by the regularization parameter C. However, 
such nonlinear formulation would suffer from the curse of dimensionality (i.e., the 
dimension of the problem becomes too large to solve) [1, 36]. However, computa-
tional efficiency is achieved from solving the dual optimization problem instead of 
the equation which is convex with a complexity that is dependent only on the num-
ber of samples [35]. The prediction function in this case is characterized only by a 
subset of the training data known as support vectors si :
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where ns is the number of support vectors, α s are the dual coefficients determined 
by quadratic programming, and K(⋅, ⋅) is the kernel function as discussed next. 
Typically, used nonlinear kernels include:
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where c is a constant, q is the order of the polynomial, and σ is the width of the 
radial basis functions. The kernel-based approach is very flexible, which allows for 
constructing a neural network by using combination of sigmoidal kernels or chooses 
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a logistic regression equivalent kernel by replacing the hinge loss with a binomial 
deviance [1].

SVM has been widely used for many radiotherapy outcome prediction cases 
where complex relationships between risk factors are expected. Examples include 
lung cancer prognosis [37–39], radiation pneumonitis [40, 41], and GI/genitouri-
nary toxicity [42].

3.3.5  Decision Trees and Random Forests

A decision tree is suitable for generating the hypotheses that consist of multiple 
Boolean conditions on attributes (disjunctive hypotheses). Although it can also per-
form regression, we will limit the discussion to its application to classification. A 
decision tree divides an input space into several disjoint subregions. A testing 
instance falls into one of the subregions after successive tests on its attribute values. 
Then, the instance is given for its classification result the value that is assigned to 
the subregion. The tests are organized in the order specified by a tree structure 
(Fig.  3.8). A tree consists of nodes, branches, and leaves, each representing the 
following:

• Node: the attribute to be tested
• Branch: the outcome of the test, for example, is the body temperature of a patient 

higher than 37° (continuous attribute) or is the patient taking aspirin (categorical 
attribute)?

• Leaf node: the node located at the terminus of a tree representing a subset of data 
and a class label assigned to the subset

The tree and its parameters are learned from training data in a supervised fash-
ion. The learning process can be thought of as dividing training instances into sub-
groups (corresponding to nodes) in a way that class labels in the subgroups are 

Outlook

Humidity WindYes

OvercastSunny

High Strong WeakNormal

No Yes No Yes

Rain

Fig. 3.8 An example 
decision tree that classifies 
whether to go play tennis 
or not (written in bold) 
based on three attributes 
(outlook, humidity, wind) 
shown in box nodes. Values 
of the three attributes are 
written on the 
corresponding branches 
(Reproduced from Mitchell 
[43])
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made as homogeneous as possible. The major questions in decision tree learning are 
(1) in which order the attributes be tested, (2) what level of purity the partition class 
labels is desired as a result of a single test, and (3) how many nodes are needed.

The ID3 (iterative dichotomizer 3) algorithm is a primitive form of the decision 
tree learning algorithm that aims to arrive at an optimal decision tree via a greedy 
search [44]. The ID3 algorithm is initiated by identifying the first attribute (root 
node) to create the first set of partitions, and the tree is further branched by applying 
the same procedure to the resulting subsets and the remaining attributes. At each 
round of partitioning, the attribute to split is chosen based on how well it can predict 
a target class by itself. In the context of decision tree learning, the predictive value 
of an attribute A with respect to a class C is measured by its information gain, which 
is defined as:

 
gain A |� � � � � � � �H A H AC  (3.14)

where H, entropy, is a measure of information conveyed by a probability distribu-
tion. For a variable A with the distribution of c discrete states and corresponding 
probabilities p1, p2,..., pc , the entropy is:
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In the case of continuous attributes, a threshold (Ath ) is set to split the data into 
two subsets with proportions p1 and p2 where p1 = p(A < Ath) and p2 = p(A > Ath). The 
value of Ath is chosen so that the resulting information gain is the largest.

A branch of the tree stops growing when all the attributes have been used or all 
the partitions of the branch are purified to one class. However, when no regulatory 
measures are taken, a tree can easily overfit the data by adding more branches until 
every training instance is correctly classified. A number of preventive methods have 
been proposed to improve the generalizability of a tree. Reduced-error pruning [45] 
reduces the size of a tree after it was learned by applying iterative pruning to 
branches. The branches closer to leaves are removed first and the pruning propa-
gates upstream until the validation performance of the pruned tree begins to 
decrease.

Overfitting can also be alleviated by a meta-algorithm called ensemble learning. 
The idea is to train a group of classifiers with a given dataset and combine their 
output in order to compensate for the high variance of an individual model. Breiman 
1 [46] applied this concept to tree learning, which is dubbed as the random forest. In 
creating a bag of models, the random forest algorithm introduces two levels of ran-
domization: First, it randomizes training samples by resampling with replacements 
(bootstrapping). Second, at each branching step it chooses an attribute to split 
among a randomly selected subset of attributes. After a bag of trees is trained, pre-
diction is made for all the individual trees and the most frequent class selected by 
the trees is taken as a final result. Boosting is another ensemble meta-algorithm that 
is often used in conjunction with decision tree. In this setting, trees are learned 
sequentially in the following way: after a tree is learned, the incorrectly classified 
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training examples are assigned with larger weights and the subsequent tree is learned 
with the reweighed training set. The final classification result is taken as an average 
output of the group of trees. Detailed algorithm can be consulted in a paper by 
Freund and Schapire [47].

Decision trees have been a popular choice for many decision support sys-
tems, especially in the field of medicine, because their representation of hypoth-
eses as sequential “if-then” clauses is easy to interpret and somewhat resembles 
human reasoning. For example, Delaney et al. [48] conducted a literature survey 
to construct a tree to determine recommendation for radiotherapy to melanoma 
patients based on several clinical attributes (Fig. 3.9). Das et al. [49] trained an 
ensemble of trees that combined dosimetric and non-dosimetric risk factors for 
radiation pneumonitis and showed that the prediction can be improved by com-
bining a larger number of trees. A drawback of using an ensemble of trees is loss 
of interpretability: Valdes et al. [50] addressed this problem in their algorithm 
MediBoost where a decision tree is trained in a boosted fashion by introducing 
“soft” partitioning. In other studies, variable importance measures from random 
forest were utilized to interpret the predictive models for radiotherapy toxicity 
[51, 52].

3.3.6  Bayesian Network

Bayesian belief network, or Bayesian network, is designed to model probabilistic 
relationships among a set of random variables. A key feature of Bayesian network 
is graphical representation of the relationships via a directed acyclic graph (DAG) 
which encodes the presence and direction of influence between variables. In a DAG, 
each variable is assigned to a node and connected to each other via an edge (vertex) 
which originates from a variable (parent) that influences the probability of the vari-
able it is connected to (child). Thus, probability of a random variable is set to be 
conditional upon its parent variable(s). The connectivity information in a DAG 
derives conditional independence relationships that can be stated as random vari-
ables X and Y are conditionally independent given another variable set Z1, Z2,..., Zn if 
and only if:

 
P X Y Z Z Z P X Z Z Zn n| , , , , , , , 1 2 1 2�� � � �� �|  (3.16)

A set of conditional independence relationships specified in a DAG greatly sim-
plifies computation of probability distributions by use of this convenient property: 
joint probability distribution between the entire variable set, X = X1, X2, , Xn, can be 
obtained by taking the product of all the conditional probabilities for each parents- 
child set (the chain rule for Bayesian networks [53]). Figure 3.10 demonstrates a 
network of local control of non-small-cell lung cancer (LC) in relation to the fol-
lowing clinical and dosimetric variables: age (A), GTV volume (G), PTV coverage 
(V75, V60), and pre-treatment chemo (P) [54]. Using the chain rule, a joint proba-
bility can be factorized into:

3 Conventional Machine Learning Methods
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Conditional probability values are often referred to as the “parameters” of 
Bayesian network. The parameters can be trained from data as a maximum likeli-
hood estimate or maximum a posteriori (MAP) which incorporates a prior probabil-
ity with the likelihood obtained from observations.

A DAG can be constructed using prior knowledge on the study domain. When 
the domain knowledge is not sufficient, observational data can be used to search for 
the DAG that can best describe the data. DAG searching can be solved as an optimi-
zation problem where a predefined scoring function is maximized over a space of 
possible DAG configurations. Searching algorithms can vary according to a choice 
of the scoring function and searching procedures. Widely used scoring functions 
include a marginal likelihood (Bayesian) score and a Bayesian information criteria 
(BIC) score. Both scores aim at achieving a balance between the fitness to data (an 
edge is more likely to be formed between the variables with stronger correlation in 
data) and complexity of a graph (quantified by the number of edges or parameters), 
although difference exists in a degree to which complexity is penalized. Mathematical 
details can be consulted in a primer by Koller and Friedman [53].

Since the number of possible DAGs grows super-exponentially with the number 
of variables, it is impractical to search exhaustively over the entire graph space for 
the highest-scoring DAG.  Various heuristic approaches have been suggested to 
reduce a computational cost. For example, a greedy search algorithm begins with 
the empty graph and keeps adding on edges only when it leads to a higher graph 
score. Also, constraints on graph topology can be imposed to the search algorithm 
in order to confine a search domain. For example, the search can be restricted to 
treelike structures (Chow-Liu trees) [55] or a certain variable ordering that permits 
only the edges between the variables in descending order (K2 algorithm) [56]. 
High-scoring DAGs can be discovered by a sampling method such as the Markov 
Chain Monte Carlo (MCMC) [57]. The MCMC algorithm generates samples of 

age

V75 V60

GTV

PreTxChemo

Local Control

Fig. 3.10 A Bayesian 
network DAG for 
predicting local control of 
NSCLC using radiotherapy 
and clinical variables. The 
DAG was trained from 
clinical data by Oh 
et al. [54]
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DAGs encountered during a random walk over the graph space (Markov chain), 
which can be approximated as a posterior distribution of DAGs upon convergence 
of a chain.

The probabilistic approach of BN makes it suitable for handling uncertainties. 
Especially in a medical domain, missing records or test results could have a negative 
impact on prediction performance. Bayesian network does not require the full 
observation on its features for prediction, as it is capable of building and marginal-
izing joint probability using the conditional dependence relationships between the 
features. This advantage, in comparison to non-probabilistic classifiers such as 
SVM, was shown in survival prediction of lung cancer patients by Jayasurya et al. 
[38]. Other applications of the BN in radiation oncology include a prognostic net-
work for prostate cancer [58] and lung cancer [54].

3.3.7  Naive Bayes

Naive Bayes is a simplified derivative of Bayesian network that is used solely for 
classification. This method makes an assumption that feature variables are consid-
ered independent given a class variable. This so-called naive independence assump-
tion can be graphically represented by the Bayesian DAG as shown in Fig. 3.11. 
Inference of the most probable state for a class, CMAP, is derived from the maximum 
a posteriori (MAP) rule, using the independence assumption:
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representation of the naive 
Bayes model for a class C 
and features A1, A2, An
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Naive Bayes is effective for classification in a high-dimensional space where 
estimating joint probability of a full variable set is challenging. Its theoretical prop-
erty is shown to be less sensitive to noisy variation in input, which contributes to its 
robust performance [59]. However, naive Bayes is not suitable for direct estimation 
of class posterior as the unrealistic independence assumption results in inaccurate 
probability estimate. Nevertheless, it has been applied to many medical prognostic 
problems where classification of a disease state is the only interest. For example, 
Kazmierska and Malicki predicted brain tumor relapse from a set of 96 features 
with naive Bayes which accuracy surpassed Bayesian network and decision tree 
algorithms [60].

3.4  Reinforcement Learning

Reinforcement learning (RL) is a class of machine learning algorithms in which a 
learner or software agent attempts to take a sequence of actions based on the under-
lying environment status that would maximize a cumulative reward such as winning 
a game of checker or chess, for instance [61]. To an extent RL mimics the way 
human learns by combining the fields of Markov decision processes (MDP) (e.g., 
dynamic programming) with supervised learning. An RL could be depicted as 
shown in Fig. 3.12 [62], in which at any time point (t) actions (at) taken by the agent 
lead to rewards (rt + 1) from the current environment state (st). The objective is to 
maximize expected discounted returns value (V) at particular state to a given 
policy (π):

 
V s E R st t

� �� � � � �/ ,  (3.16)

where R is the return function R E r rt
t

t
t� � � ��

�

�

��� �1
0

1  and 0 ≤ γ ≤ 1 are discounted 
return rates.

A known approach to solving such a discounted infinite horizon MDP is 
Q-learning stochastic algorithm [63] which is an iterative approach to solving the 
Bellman optimality of the action-selection problem using model-free 

Agent

Environment

Reward
State
St

at
rt

rt + 1

St + 1

Action

Fig. 3.12 Reinforcement 
learning system
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(unsupervised) or model-based (supervised) methods. Techniques based on RL 
have been adopted in the design of adaptive clinical trials to estimate individual 
treatment rules [64]. For instance, the sequential multiple assignment randomized 
trial (SMART) has been applied for adaptive interventions in different diseases 
related to drug abuse, HIV/AIDS, and mental illness with promising results [65]. 
Examples of applying RL to radiotherapy is presented by Kim et al. [66], where 
they showed numerical examples of modifying dose fractionation schedules using a 
Markov decision process for adaptive radiotherapy applications. Another example 
is presented by Vincent et al. to optimize the dose per fraction using different utility 
functions in cell culture experiments [67].

3.4.1  Reinforcement Learning for Adaptive Liver 
Cancer Treatment

Adaptive radiotherapy was applied to the population of 88 liver stereotactic body 
radiation therapy (SBRT) patients with 35 on non-adaptive and 53 on adaptive 
protocols from a population of 145 patients [68]. Adaptation was based on liver 
function in a split course of 3 + 2 fractions with a month break. Plasma biomarkers 
were analyzed before and during radiotherapy. Normal tissue complication proba-
bility (NTCP) was assessed as a one-grade change in ALBI toxicity score. The 
radiotherapy environment was modeled as a 2-stage MDP: baseline and one month 
into radiotherapy states. States were represented by the patient’s clinical, dosimet-
ric, and biological covariates. Two decision-making scenarios at stage-2 were con-
sidered for evaluating RL: (1) adapting with a split course or not, and (2) delivering 
an additional 2 fractions after the initial 3 fractions course. The reward/regret was 
defined by the complication-free tumor control (P+) as a function tumor control 
probability (TCP) and NTCP: of [P+=TCP × (1 − NTCP)]. Q-learning with a sim-
ple regression of state-action mapping was used for strategy optimization. The 
performance was evaluated using an adjusted R-squared (aR2) to correct for over-
fitting. Using a state of clinical and dosimetric (tumor size, tumor dose, mean liver 
dose) covariates, Q-learning at one month (stage-2) selected split-course adapta-
tion as an optimal action with an aR2=0.65 (p < 0.001). Percentage change in the 
cytokine TGF-β1 concentration was the only biological variable to correlate with 
outcomes (ALBI score, p = 0.03). Its addition improved the fit to aR2=0.74. In the 
case of 3 versus 5 fractions determination, the delivery of 2 extra fractions pro-
vided better action with an aR2=0.66 (p < 0.001) and 70.5% of the patients benefit-
ing. The addition of TGF- β1 improved the fit to aR2=0.74, and the percentage of 
patients benefiting from current clinical adaptation was found to be 65.5% as 
shown in Fig. 3.13.
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4Overview of Deep Machine Learning 
Methods

Julia Pakela and Issam El Naqa

4.1  Introduction

Deep machine learning or “deep learning” refers to a class of machine learning 
methods, which takes raw data as inputs and, through training, learns multiple lay-
ers of relevant latent features to map the raw inputs to the desired output space; the 
desired mapping is defined by either a reward or a loss function of the outputs for 
detection or classification tasks [1]. This is in contrast to shallow learning, where 
the features are manually crafted and do not contain multiple layers of abstraction. 
Conceptually then, deep learning can be applied to any machine learning technol-
ogy as depicted in Fig. 4.1, but as of this time has been practically shown to be most 
effective with deep neural networks [2, 3], which will be the main subject of this 
chapter.

Deep learning algorithms typically take the form of artificial neural networks 
(ANNs) with multiple hidden layers; however, it is important to recognize that deep 
learning is defined by the ability to automatically learn relevant features (data rep-
resentations) from raw inputs rather than any particular structure scheme [3]. This 
is achieved using highly parameterized networks featuring layers of nodes, where 
each node takes as input the weighted outputs from other nodes and produces its 
own output using a nonlinear transformation on a weighted sum of the inputs plus 
an additional bias term (as will be discussed later).
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The foundational groundwork for deep learning was laid decades prior to its rise 
in popularity: first in the 1950s when Rosenblatt introduced the concept of the per-
ceptron (a precursor to the hidden nodes in today’s neural networks) and later in the 
1980s with Hinton and Sejnowski’s invention of the Boltzmann Machine (a multi-
layer network similar in design to modern neural networks) [4, 5]. However, for 
several decades deep learning methods were not viable for solving real-world prob-
lems. This was partly due to limitations on the computer processing power neces-
sary to train the multilayer networks envisioned by deep learning researchers and 
also due to a need for further algorithmic innovations (such as dropout and stochas-
tic optimization schemes) to improve training efficiency. By the early 2010s, such 
discoveries, in combination with improvements in computer parallel processing 
power and GPUs, helped to provide the necessary conditions for deep learning 
methods to take the world by storm. This was a phenomenon which arguably began 
with the startling 2012 victory in the ImageNet competition (an annual image clas-
sification challenge which sets the bar for the state-of-the art in computer vision) 
with AlexNet: a deep convolutional neural network architecture [6]. Deep learning 
has since been applied with great success to many diverse challenges, including 
language translation, speech recognition, training of self-driving cars, and even 
stock-market predictions [7].

Since its recent rise in popularity, deep machine learning has also made a signifi-
cant impact on the medical field, specifically in the areas of diagnostic (Radiology) 
and therapeutic (Radiation oncology) radiological sciences [8].

Applications in radiology and computer-aided diagnosis (CAD) were at the fore-
front of application of machine and deep learning in medicine since the 1980s [9–
14]. These applications included using ANNs generally [15] as well as convolutional 
neural networks (CNNs) for breast cancer detection and diagnosis [16–18]. This 

Feature
extractor

Features
Detector/
Classifier

Output labels
Input raw

data

Deep learning process

Deep learning algorithm

Conventional “shallow” learning process

Fig. 4.1 Conventional “shallow” machine learning (top) versus deep learning algorithms, where 
image data representation and classification are handled within the same framework
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pioneering work has led to several FDA approved systems including the QuantX 
Advanced system to aid in breast cancer diagnosis (CADx), developed originally by 
Giger and colleagues [19–23]. Today, deep learning techniques are touching every 
aspect of radiology from improving image quality by improving current image 
reconstruction and filtering of modalities such as MRI [24], CT [25] and ultrasound 
[26], to image segmentation [27], registration [28], to precision medicine and the 
derivation of reproducible imaging biomarkers [29].

As another innovative and data-heavy field, radiation oncology has been uniquely 
positioned to experience an explosion of deep learning applications as well. The 
number of radiation oncology and medical physics papers published which feature 
deep learning has increased steadily over the past 5 years, with a wide variety of 
applications including treatment planning [30–33], adaptive radiotherapy [34–38], 
quality assurance [39–42], and outcomes modeling [43–49]. For the interested 
reader, there also exist several comprehensive reviews of deep learning, machine 
learning, and artificial intelligence applications in medical physics and radiation 
oncology [50–53]. Figure 4.2 provides a visualization of the rise in deep learning 
both in biomedical literature and in publications specific to medical physics and 
radiation oncology.
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Fig. 4.2 Incidence of deep-learning-themed papers in biomedical literature as well as in medical 
physics and radiation oncology. Data was obtained through the advanced search function on 
PubMed. Search criteria used were (all fields: deep learning), (all fields: deep learning) AND (all 
fields: medical physics OR all fields: radiation oncology) and (all fields: deep learning) AND (all 
fields: radiology), respectively
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4.2  The Vanilla Neural Network

A standard “fully connected” or “vanilla” neural network consists of layers of neu-
rons (also called “units” or “nodes”). In a given layer, each node has weighted con-
nections to every node in the previous layer and every node in the next layer. Nodes 
do not share connections within the same layer. This forward-directed flow of infor-
mation is why vanilla neural networks are also referred to as “feedforward neural 
networks.” In literature, one may also see the term “multilayer perceptron” used to 
refer to fully connected feedforward neural networks.

The structure of a three-layer vanilla neural network is visualized in Fig. 4.3. The 
first layer in the neural network is the input layer, x(1). The input layer takes raw data 
inputs and propagates them to the next layer. The final layer, x(3), is the output layer. 
The results from the output layer represent the network’s output and are used to 
define a loss function. The width (i.e., number of nodes) for the input and output 
layers are typically determined by inherent characteristics of the data and the task 
the network performs. For example, a network designed to use greyscale images 
with 128 × 128 pixels will have 16,384 nodes in its input layer, where each node 
represents the intensity of a pixel in the image. If the task for the network is to clas-
sify handwritten digits, then the output layer will have a width of 10, with each node 
outputting the raw prediction score (to be later normalized into a probability) of a 
given digit. Hidden layers (x(2)) consist of all layers between the input and output. 
The width and total number of hidden layers are hyperparameters, meaning their 
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Fig. 4.3 A three-layer neural network (input layer, hidden layer, and output layer). The output of 
each node is determined by performing a nonlinear transformation (known as the activation func-
tion) on the sum of the weighted inputs plus an additional bias term
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values are chosen by the user and are not updated during training. The act of select-
ing/tuning hyperparameters for a given model is an active area of research and con-
sidered an art in and of itself [54, 55].

4.2.1  Training a Neural Network

The process of training a neural network involves training a set of weights and 
biases which act like “knobs” to control the flow of information across the network. 
The number of weights and biases needed to train depends on the size of the net-
work: the example neural network shown in Fig. 4.2 has 128 weights and 12 biases, 
but a typical network can have hundreds of millions of weights [3]. As mentioned in 
Sect. 4.2, each node in a neural network receives information from each of the nodes 
in the previous layer (this can be visualized through the color-coded arrows in 
Fig. 4.3). The output for each node is a function of the weighted sum of each incom-
ing signal plus a bias term. We can therefore write the output for a given node, 

x j
l+( )1 ,  within layer, l + 1, as:
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where Wij represents the weight associated with the connection from node xi
l( ) to 

x j
l+( )1 , bj is the bias associated with node x j

l+( )1 , and σ is the activation function. In a 
biological neural network, in order for a neuron to fire, it needs to receive enough 
electrical signal from other neurons to overcome a threshold known as the activation 
potential. In artificial neural networks, the activation function performs a similar 
role to the activation potential: it determines whether the node has received enough 
“signal” to fire. Common choices for activation functions include the hyperbolic 
tangent, sigmoid, softmax, and Rectified Linear Unit (ReLU) functions. Of these 
three, ReLU is arguably the most popular as it has been found to make networks 
more easily trainable [3, 56]. Figure 4.4 displays equations and graphical represen-
tations for each of these functions. Importantly, one trait that neural network activa-
tion functions share is that they are nonlinear functions: they perform a nonlinear 
operation or transformation on input features to produce an output. This trait is 
significant because it allows neural networks to model complex, nonlinear relation-
ships between the input data and the desired output.

At the start of training, the weights and biases of the network are initialized. A 
common method for initialization which has been found to work well is the Xavier 
initialization, in which the biases are initially set to 0 and the weights for a given 
node are randomly sampled from a normal distribution and bounded by:
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where nj and nj + 1 are the number input and output connections to the node, respec-
tively [57]. Another popular initialization technique is He initialization [58], which 
instead bounds uniformly sampled weights from:

 

−












2 2

n nj j

,
 

(4.3)

After initialization, data is fed into the network, which produces an output. This 
output is then fed into a cost function (also called a loss function) to calculate a loss. 
The weights and the values of the network are then updated via gradient descent. 
The gradient of the loss function is calculated with respect to the weights and biases 
of every node in the network using the chain rule. Each of these parameters is then 
updated by adding the gradient term multiplied by a fractional learning rate typi-
cally on the order of hundredths or thousandths. This process is then repeated in an 
iterative fashion until a stopping criteria is met—either the loss reaches a minimum 
criterion, or a max number of iterations is performed. For a large network, calculat-
ing the gradient of the loss function with respect to millions of parameters is a 
computationally expensive endeavor. A major breakthrough in the deep learning 
community was the introduction of the backpropagation algorithm, which provided 
an efficient means of calculating the loss gradient with respect to network parame-
ters [1, 59].
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4.2.2  Hyperparameters Associated with Training

Four significant hyperparameters associated with the training process are batch size, 
number of epochs, learning rate, and dropout rate. The batch size is the number of 
data samples fed to the network before the weights and biases are updated. Batch 
size can range from 1 (the network is updated after a single sample) to the size of 
the training dataset (the network is only updated after it has seen every possible data 
sample). Training schemes with a batch size of 1 are referred to as stochastic gradi-
ent descent, while training schemes with a batch size equal to the number of training 
samples are referred to as just gradient descent or batch gradient descent. If the 
batch size is a number between 1 and the training sample size, the algorithm is said 
to undergo minibatch gradient descent. Of these three training schemes, batch gra-
dient descent is the least noisy because it uses every data sample when calculating 
the gradient—meaning it isn’t going to be impacted by variations within the dataset. 
However, for very large datasets (on the order of millions of training examples) it is 
computationally expensive to pass all of the data through the network before each 
update, which increases the overall training time. Stochastic gradient descent leads 
to a much noisier learning process because the network is updated after only a sin-
gle data sample, which may not be representative of the dataset as a whole. A benefit 
of stochastic gradient descent is that in updating after only a single sample, the loss 
function may approach a value close to the global minimum at a faster rate. However, 
this also means the network must be updated more frequently, which is also compu-
tationally expensive. Minibatch gradient descent serves as a compromise between 
these two extremes by using a batch size large enough to be somewhat representa-
tive of the entire dataset, which minimizes training noise, but small enough that the 
network is able to update more frequently, leading to faster overall training times. 
During training, it is standard to normalize the network inputs on a batch by batch 
basis—a procedure called batch normalization—in order to improve the training 
speed and model stability [60].

An epoch refers to an instance in which the entire training dataset has been 
passed through the network. The number of epochs is thus a hyperparameter which 
describes how many times the entire dataset is passed through the network during 
training. Typically, a network requires the entire training dataset to be passed 
through it multiple times before the loss function converges to a minimum.

The learning rate (mentioned briefly in Sect. 4.2.2) is a fractional coefficient 
applied to the loss function gradient and can be thought of as the step size used 
when updating the weights and biases to minimize the loss function. A popular 
choice for neural network optimization is to use an adaptive learning rate defined 
using the Adam stochastic optimization algorithm [61].

Dropout is a standard practice used during neural network training to prevent 
overfitting of the model. It consists of randomly selecting a set number of nodes in 
the network and setting their output to 0—effectively dropping them (and their con-
nections) from the network. The fraction of neurons in a given layer which are 
dropped during training is called the dropout rate [62].
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4.2.3  What Makes a Neural Network Deep?

Deep machine learning was defined in Sect. 4.1 as any machine learning method 
which learns multiple layers of latent features from raw data. Deep neural networks 
are by far the most successful deep learning architecture to date, so much so that the 
phrase deep learning is sometimes used interchangeably with neural networks. This 
subsection aims to provide some intuition as to why and under what conditions 
neural networks perform so well.

One important property of neural networks (already mentioned in Sect. 4.2.1) is 
the use of nonlinear activation functions, which allow the model to learn nonlinear 
relationships between data and outputs. With respect to modeling capabilities, it has 
been proven that neural networks are universal approximators: a feedforward neural 
network with as few as one hidden layer and arbitrary bounded, non-constant acti-
vation functions can be used to approximate any real, continuous function on a 
closed and bounded subset of Rn to any accuracy [63]. This result is often referred 
to as the universal approximation theorem and tells us that a multilayer feedforward 
neural network can represent nearly any function given a sufficient number of hid-
den nodes. The result has undergone multiple iterations to clarify what conditions 
the activation function must meet for the theorem to be true—notably with showing 
that the universal approximation theorem extends to the highly successful ReLU 
activation function [64, 65].

A key limitation of the universal approximation theorem is that it does not tell us 
how large (in terms of layers or neurons) the network needs to be in order to achieve 
universal approximation, nor does it guarantee that a sufficiently large network can 
be successfully and efficiently trained to be generalizable—i.e., a network that is 
large enough to represent any function may be trained to perform with high accu-
racy on the training dataset but still perform poorly on the validation data [65]. 
While a shallow neural network with only one hidden layer is capable of being a 
universal approximator, such a network requires so many nodes in its hidden layer 
that efficient and effective training is infeasible—it is too wide [65, 66]. It has been 
found that neural networks with more hidden layers reduce the necessary width for 
each layer and ultimately the total number of nodes needed for high accuracy, pro-
viding the best trade-off between training efficiency and model performance. 
Generally, a neural network is considered deep if it has multiple hidden layers.

4.2.4  Example: Neural Network for Binary Classification

In this subsection we provide a didactic example, borrowed from Cui et al., of a 
feedforward neural network performing a binary classification task within a radia-
tion oncology paradigm [67].

The input data were acquired from the Cancer Genome Atlas Lung 
Adenocarcinoma (TCGA-LUAD) and Lung Squamous Cell Carcinoma (TCGA- 
LUSC) datasets, respectively. The selection criteria included patients from these 
datasets who received external beam radiotherapy for a primary tumor and had 
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complete dose and local control information. In total 45 patients were selected and 
were randomly split into training and validation sets. Data collected from each 
patient included patient outcome (defined as either local control or tumor progres-
sion) as well as predictive variables such as gender, primary tumor stage, total radia-
tion dose, and smoking history. These predictive variables were converted to 
numerical values where necessary and standardized using the z-score transforma-
tion. Any missing data was filled with median values prior to standardization.

A feedforward neural network built using the PyTorch framework was trained on 
the lung-patient dataset to predict patient outcomes. The network has two hidden 
layers; each layer features a ReLU activation function and dropout (dropout 
rate = 20%). The final output layer undergoes a sigmoid activation. The model was 
trained using Adam optimization for 500 epochs. The training and testing loss and 
final ROC curve and code are displayed below. The code and data can also be down-
loaded at: https://github.com/sunancui/lung_TCGA_prediction (Fig. 4.5).

import numpy as np  
import pandas as pd  
import os  
import torch  
import matplotlib.pyplot as plt  
from sklearn.preprocessing import StandardScaler  
from sklearn.model_selection import train_test_split  
from sklearn.metrics import roc_auc_score  
from sklearn.metrics import roc_curve  
# processing the data, convert to numeric values  
def data_processing(data_df):  
    data_df['gender']=data_df['gender'].replace(["MALE","FEM
ALE"],[0,1])  

data_df['pathologic_N']=data_df['pathologic_N'].replace 
(["N0","N1","N2","N3","NX"],[0,1,2,3,np.nan])
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Fig. 4.5 (a) Final ROC scores for network trained to predict local control in lung cancer patients. 
(b) Training and validation loss functions over the course of 500 epochs
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    data_df['pathologic_stage']=data_df [‘pathologic_stage’] 
.replace(["Stage IA","Stage IB","Stage IIA","Stage IIB","Stage II
IA", "Stage IIIB","[Discrepancy]"],[1,1,2,2,3,3,np.nan])  
    data_df['pathologic_T']=data_df['pathologic_T'].replace(["T1", 
"T1a","T1b","T2","T2a","T2b","T3","T4"],[1,1,1,2,2,2,3,4])  
    data_df['other_dx']=data_df['other_dx'].replace(["No","Yes,  
History of Prior Malignancy"],[0,1])  
    data_df['tobacco_smoking_history']=data_df['tobacco_smoking_
history'].replace(["1","2","3","4","[Not Available]"],[1,2,3,4,
np.nan])  
    data_df['primary_outcome']=data_df['primary_outcome'].replace
(["progressive",'local'],[1,0])  
    #fill missing data with median values  
    data_df_fill=data_df.fillna(data_df.median())  

return data_df_fill  
os.chdir("/Users/sunan/Desktop/github/lung_TCGA_prediction")  
AD_SC_patient=pd.read_csv("./rd_AD_SC.csv",index_col=0)  
select_column=["gender","pathologic_N","patholo
gic_stage","pathologic_T", 'other_dx', 'tobacco_smoking_
history','radiation_total_dose','primary_outcome']  
data_all=AD_SC_patient.loc[:,select_column]  
data_all_values=data_processing(data_all)  
##features  
data_X=data_all_values.iloc[:,:-1].values  
scaler=StandardScaler()  
scaler.fit(data_X)  
X_scaled=scaler.transform(data_X)  
##label  
data_Y=data_all_values.iloc[:,-1].values  
##train_test_split  
X_train, X_test, Y_train, Y_test=train_test_split 
(X_scaled,data_Y,test_size=0.33,random_state=0,stratify=data_Y)
##convert numpy array to torch tensor  
X_train_torch=torch.from_numpy(X_train)  
Y_train_torch=torch.from_numpy(Y_train.reshape(-1,1))  
X_test_torch=torch.from_numpy(X_test)  
Y_test_torch=torch.from_numpy(Y_test.reshape(-1,1))  
##set some parameters  
input_dim=X_train.shape[1]  
output_dim=1  
hidden_dim=5  
learning_rate=0.001  
num_epoch=500  
# define a 2-hidden layer fully-connected NN  
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class MLP_NN(torch.nn.Module):  
def __init__(self, input_dim, hidden_dim_1,hidden_dim_2, out-

put_dim):  
        super(MLP_NN, self).__init__()  
        self.L1=torch.nn.Linear(input_dim,hidden_dim_1)  
        self.D1=torch.nn.Dropout(0.2)  
        self.L2=torch.nn.Linear(hidden_dim_1,hidden_dim_2)  
        self.D2=torch.nn.Dropout(0.2)  
        self.L3=torch.nn.Linear(hidden_dim_2,output_dim)  

def forward(self,x):  
        a1=torch.relu(self.L1(x))  
        a1=self.D1(a1)  
        a2=torch.relu(self.L2(a1))  
        a2=self.D2(a2)  
        outputs=torch.sigmoid(self.L3(a2))  

return outputs  
#initialize the model  
model=MLP_NN(input_dim,hidden_dim,hidden_dim,output_dim)  
#using binary cross entropy as loss  
criterion=torch.nn.BCELoss(reduction='mean')  
#using Adam optimizer  
 optimizer=torch.optim.Adam(model.parameters(), 
 lr=learning_rate)  
history_loss_train=[]  
history_loss_test=[]  
for i in range(num_epoch):  
    #train data  
    model.train()  
    optimizer.zero_grad()  
    y_pred=model(X_train_torch.float())  
    #define the loss, adding l2 penalty  
    loss=criterion(y_pred,Y_train_torch.float())  
    loss.backward()  
    optimizer.step()  
    # evaluate on test data  
    model.eval()  
    y_pred_test=model(X_test_torch.float())  
    loss_test=criterion(y_pred_test,Y_test_torch.float())  

if i%10==0:  
print(i, loss, loss_test)  

    history_loss_test.append(loss_test.detach().numpy())  
    history_loss_train.append(loss.detach().numpy())  
# plot the history of training/test loss  
plt.figure()  
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 plt.plot(np.
arange(0,num_epoch),history_loss_train,label="training")  
plt.plot(np.arange(0,num_epoch),history_loss_test, 
label="validation")  
plt.xlabel("epoch",fontsize=18)  
plt.ylabel("Loss",fontsize=18)  
plt.legend(prop={'size':16})  
plt.show()  
#calculate AUC for traing/test sets  
auc_train=roc_auc_score(Y_train, y_pred.detach().numpy())  
auc_test=roc_auc_score(Y_test, y_pred_test.detach().numpy())  
fpr, tpr,thresholds=roc_curve(Y_train, y_pred.detach())  
plt.figure()  
fpr_t, tpr_t,thresholds=roc_curve(Y_test, y_pred_test.detach().
numpy())  
plt.plot(fpr,tpr,label="training AUC:"+str(round(auc_train,2)))  
plt.plot(fpr_t,tpr_t,label="test AUC:"+str(round(auc_test,2)))  
plt.legend(prop={'size':16})  
plt.xlabel('1-Specificity',fontsize=16)  
plt.ylabel('Sensitivity',fontsize=16)  
plt.show()  

4.3  Autoencoders

Autoencoders (AEs) represent a class of unsupervised deep learning architectures 
which use a two-part encoder-decoder framework to learn a lower-dimensional data 
representation (or feature representation). An AE’s encoder portion takes raw data 
as input and encodes it into a lower-dimensional representation of the data or latent-
space representation, h. The decoder portion takes the latent-space representation, 
h, as input and then outputs a reconstruction which is the same dimension as the 
original raw data. The loss function is defined as a function of the difference between 
the input, x, and the final reconstruction, x’. Figure 4.6 displays an example of a 
simple AE which uses feedforward nodes as its building blocks. Note, however, that 
AEs can also utilize CNNs (Sect. 4.4) in their design. AEs have uses in both feature 
learning and for reducing high-dimensional datasets into their most critical compo-
nents for more efficient training on other architecture types. Variational autoencod-
ers (VAE) represent a variant of AEs which utilize the same encoder-decoder 
architecture, but additionally assume that the latent space of the data is subject to a 
Gaussian distribution with a mean, μ, and variance, σ [68]. In a VAE, the encoder 
receives an input and generates parameters which define the latent space distribu-
tion. This latent space distribution is then sampled to generate the latent 
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representation, h, which is subsequently fed to the decoder to produce the recon-
struction, x’. The loss function used for VAEs can be written as [49, 68]:

 

L x x
j

J

j j j= − + + ( ) − −( )′
=
∑ 

2

1

2 2 21

2
1 log σ µ σ

 
(4.4)

The first term in Eq. (4.4) represents the reconstruction error and is an approxi-
mation of the expected negative log likelihood of outcome of x being correctly 
observed given the network-generated latent vector, h. The second term serves as a 
regularization penalty and is an approximation of the Kullback–Leibler divergence 
between the network-learned latent space distribution and a standard normal distri-
bution. Because a VAE tries to learn both the true latent distribution and the latent 
representation, it can be utilized as a generator to produce additional data samples, 
which are representative of the true dataset.

4.4  Convolutional Neural Networks (CNNs)

Among the most well-known deep learning algorithms are convolutional neural net-
works (CNNs). Biologically inspired by animal’s visual cortex, CNNs were first 
proposed in 1980 [69] and have since revolutionized the field of computer vision. 
An important characteristic of CNNs is their translation invariant properties, which 
is a main attraction for their popularity in computer vision and imaging applica-
tions. CNNs differ from standard feedforward neural networks in that they are able 
to learn features which depend on local structural relationships within the data, 
making them particularly adept at tasks involving image data.

The standard building blocks of a CNN are convolutional layers, which are 
responsible for creating feature maps of the input data; pooling layers, which reduce 
the number of parameters in the model and help to prevent overfitting; and one or 
more fully connected layers at the end of the network. Each of these components is 
discussed in greater detail in the following sections. Figure 4.7 displays a simple 
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Fig. 4.6 Schematic of autoencoder architecture
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CNN with two convolutional layers, two pooling layers, and three fully con-
nected layers.

4.4.1  Convolutions

A convolution is an operation on two functions which produces a third; it is typi-
cally denoted with an asterisk, ∗. The convolution of two real-valued, continuous 
functions is represented mathematically as the integral over the product of two func-
tions, where one of the functions is flipped and shifted:

 
f g x f t g x t dt∗( )( ) = ( ) ⋅ −( )∫  (4.5)

One known property of convolutions is that they are commutative, meaning 
(f ∗ g) = (g ∗ f), allowing for the order in Eq. (4.5) to be flipped when convenient. In 
machine learning—particularly image processing—both the input data and the 
model parameters are discrete values and are therefore not represented by continu-
ous functions but by discrete functions defined over a finite range. For two discrete, 
complex functions defined on a set from is −M to M, the discrete convolution is 
defined as:

 
f g x f m g x m

m M

M

∗( )[ ] = [ ]⋅ −[ ]
=−
∑  

(4.6)

For two-dimensional discrete functions (defined on −M to M and −N to N, 
respectively), the corresponding 2D convolution can be written (using the commu-
tative property) as:

 
f g x y g f x y f x m y n g m n

m M

M

n N

N

∗( )[ ] = ∗( )[ ] = − −[ ]⋅ [ ]
=− =−
∑ ∑, , , ,

 
(4.7)

The function f is typically referred to as the input—in the case of Eq. (4.7), f 
would be an M × M grid of values, such as a 2D greyscale image. The function g (in 
Eq. (4.7), an N × N grid of values) is called a kernel. The values within the kernel 
are learned parameters initialized at the beginning of training and then updated 
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Pooling
Convolution
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Fig. 4.7 Schematic of a CNN with 2 convolutional layers, and 2 fully connected layers
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during backpropagation. One detail to note is that the operation that many machine 
learning libraries (including PyTorch and Tensorflow) perform in practice is actu-
ally a cross correlation operation, which is similar to convolution but does not flip 
the direction of the kernel [65, 70, 71]:

 
g f x y f x m y n g m n

m M

M

n N

N

∗( )[ ] = + +[ ]⋅ [ ]
=− =−
∑ ∑, , ,

 
(4.8)

The use of the cross correlation in place of a true convolution is a choice of con-
venience which has no impact on a network’s performance capabilities. The differ-
ence between a CNN trained using cross correlation vs. one trained using convolution 
is that the kernel learned for the latter will be flipped with respect to the former 
[65]—i.e., the weights learned are saved in different positions. For simplicity we 
will continue to refer to the operation which occurs in the convolutional layer as a 
“convolution,” with the understanding that unless stated otherwise we are referring 
to the cross correlation process.

The process of convolving a kernel with an input can be visualized as the kernel 
sliding across the input volume, where the value stored in each index of the feature 
map is the sum of the products between the overlapping grids (see Fig. 4.8). The 
convolution operation can be generalized to any dimension—allowing it to be 
applied to 3D images such as CT scans, videos, and color images. A color image can 
be represented as a 3D image with dimensions of image height × image width × 
3—where the third dimension represents the red, blue, and green channels, respec-
tively. In the case of videos, the third dimension represents time, and the number of 
channels is determined by the number of timeframes in the video.

The output of a convolution in a CNN is called a feature map and contains 
higher-order information about the original sample input. The dimension of the fea-
ture map is determined by the input size, the kernel size, the stride length (how far 
the kernel shifts between each sub-calculation), and whether the input has been 
padded around its border. Figure  4.8a displays a convolution operation with no 

a b

Fig. 4.8 The convolution operation can be visualized as sliding the kernel across the input and 
taking the sum of the products between the overlapping grid values. (a) displays the convolution 
operation on an input with no padding and a kernel stride length of 1, while (b) shows a convolu-
tion operation on an input with 1 layer of padding and a kernel stride length of 3
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input padding and a stride length of 1, while Fig. 4.8b shows an example with 1 
layer of padding and a stride length of 3. A visually rich review on convolutional 
operations for CNNs can be found in Dumoulin and Visin’s guide to convolutional 
arithmetic [72], while a more mathematical description can be found in Goodfellow 
et al.’s deep learning textbook [73]. Feature maps are typically passed through a 
nonlinear function (such as ReLU) and undergo pooling after which they are either 
used as input into another convolution operation (which represents a new convolu-
tional layer in the network) or reshaped into a vector to be used as input into a 
feedforward neural network. Most CNNs have a feedforward neural network as the 
backend of their framework, which is typically referred to as the fully con-
nected layer.

An important characteristic of CNNs is that the convolutional method by which 
feature maps are created requires that for a convolutional layer, the parameter 
weights (defined by the kernel) are shared across the entire input. This, combined 
with the use of kernels whose dimensions are much smaller than the input, greatly 
improves the model training efficiency and allows the model output to be transla-
tionally invariant [65].

4.4.2  Pooling

Prior to their use as inputs for new layers, feature maps typically undergo pooling: 
an operation which reduces their dimensionality. Pooling can be thought of as split-
ting a feature map into uniformly sized regions and saving a single representative 
value from each region in a final, lower-dimensional feature map. There are several 
types of pooling: common variants include max pooling, which saves the maximum 
value in the region of interest; mean pooling, which saves the average value in the 
region of interest; and L2 norm pooling, which saves the Euclidean norm in the 
region of interest. The size of the region of interest used, and by extension the extent 
of the dimensional reduction, is a hyperparameter chosen by the user. Pooling is an 
important component of CNN models because it teaches the models to identify 
intrinsic patterns in the data without being sensitive to small translations. One can 
imagine how this property would be valuable in the context of a classification prob-
lem. For example, if the goal of a CNN is to identify the presence of malignant 
tumors, it is not necessary for the network to learn the exact pixel locations of the 
tumor in order to perform this task—simply knowing there is one somewhere in the 
top right corner of an image would suffice.

4.5  Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of deep learning method designed to 
handle sequential data or time-dependent data such as that found in text, audio, or 
video. RNNs differ in structure from vanilla neural networks in that the width of the 
network (i.e., number of nodes per layer) is determined by the number of elements 
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in the sequence and the flow of information is not feedforward but rather flows both 
“upwards” across the layers and “horizontally” across the sequence itself. Within 
each layer of an RNN, a given cell at time-step t calculates a hidden state, ht, which 
holds the memory of the network up through that time-step. For any RNN, the hid-
den state can be written as:

 
h f x ht t t= ( )−, 1  (4.9)

where f is a function of the input state xt and the previous hidden state ht − 1. For a 
standard or vanilla RNN, the hidden state is defined as:

 
h W x b W h bt ih t ih hh t hh= + + +( )−σ 1  (4.10)

where Wih, bih, Whh, and bhh are network weights and biases and σ is an activation 
function, typically tanh or ReLU. RNNs share the same weights and biases for each 
cell in the sequence, which significantly reduces the number of parameters the net-
work needs to train. This property is also the reason why RNNs bear the name recur-
rent: the operation in Eq. (4.9) is repeated throughout each node in the network with 
only the inputs changing. The output at each node in the final layer of the network 
is calculated as:

 
o W h bt oh t oh= +( )σ  (4.11)

where σ again represents a nonlinear activation function. For RNNs with more than 
one layer, the output ot is only calculated for the set of hidden states in the final 
layer, and the nodes of intermediate layers take corresponding hidden states from 
the previous layer as their input, xt. The general structure of an RNN is displayed in 
Fig. 4.9.

A significant limitation of vanilla RNNs is that as the sequence length increases, 
the impact of long-term memories become increasingly small, leading to perfor-
mance degradation. This challenge is typically referred to as the vanishing gradient 
problem because the gradients used for updating the networks weight and bias 
parameters become negligibly small and the model ceases to learn [74]. It has been 
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Fig. 4.9 Schematic diagram of a standard recurrent neural network (RNN). (a) shows the network 
in a folded state, representing that the final output at any point in the sequence is a product of the 
current input and the networks memory of previous states. (b) displays the network fully unfolded

4 Overview of Deep Machine Learning Methods



68

found that a way to mitigate the vanishing gradient problem is to build in a way for 
the network to learn to “forget” some portion of its past history while holding onto 
memories that are essential for minimizing its particular loss function. Two leading 
variations on the standard RNN which incorporate this concept into their design are 
Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs); 
each are discussed in detail in the following sections.

4.5.1  Long Short-Term Memory (LSTM)

LSTM is a variant of RNNs, which adaptively learns to remember only the informa-
tion from its sequence history which is relevant to the problem it is solving. The 
LSTM architecture was described by Hochreiter and Schmidhuber in 1997 [75]. 
Since its conception, many variations and evolutions of LSTM have been proposed, 
but the version of LSTM currently accepted as standard or “vanilla” by the deep 
learning community was described by Graves and Schmidhuber in 2005 [76, 77]. 
As such, when sources refer to an LSTM without specifying which version, one can 
infer the Graves and Schmidhuber implementation is implied.

Equations (4.12)–(4.17) depict the calculations which occur for each cell in a 
vanilla LSTM network, where σ represents the sigmoid activation function and ⊙ 
denotes the Hadamard product, which performs element-wise multiplication 
between two variables.

 
i W x b W h bt ii t ii hi t hi= + + +( )−σ 1  (4.12)

 
f W x b W h bt if t if hf t hf= + + +( )−σ 1  (4.13)

 
g W x b W h bt ig t ig hg t hg= + + +( )−tanh 1  (4.14)

 
o W x b W h bt io t io ho t ho= + + +( )−σ 1  (4.15)

 c f c i gt t t t t= +− 1  (4.16)

 
h o ct t t= ( ) tanh  (4.17)

LSTMs feature three states for each time-step, t: the input state, xt; the hidden 
state, ht; and the cell state, ct. The cell state is a key component of LSTMs because 
it allows selective information to travel long distances across the network, giving 
that network a long-term memory. The variables it, ft, gt, and ot represent the input, 
forget, cell, and output gates, respectively. The input and forget gates are used to 
control the flow of information across the cell gate, the input gate controls what 
information gets incorporated into the current cell state, while the forget gate allows 
the state to “reset” itself. The cell gate (also referred to as the block input) works 
with the input gate to help determine what new information is added to the cell state. 
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Finally, the output gate controls what information from the cell state incorporated 
into the hidden state.

4.5.2  Gated Recurrent Units (GRUs)

GRUs are a variant of LSTM whose success and popularity rival the vanilla 
LSTM. Proposed by Cho et al. in 2014, GRUs are similar in design to LSTMs but 
contain fewer gates and are therefore faster to train [78]. Both GRUs and LSTMs 
have been shown to outperform traditional RNNs; however, the question of which 
network is superior is ambiguous and may be dependent on the dataset at hand [79, 
80]. The gates which comprise each unit of a GRU are defined as follows:

 
r W x b W h bt ir t ir hr t hr= + + +( )−σ 1  (4.18)

 
z W x b W h bt iz t iz hz t hz= + + +( )−σ 1  (4.19)

 
n W x b r W h bt in t in t hn t hn= + + +( )( )−tanh  1  (4.20)

 
h z n z ht t t t t= −( ) + −1 1   (4.21)

Equation (4.18) defines the reset gate, rt. The reset gate is responsible for allow-
ing the node to reset itself or forget some of the information from earlier hidden 
states. Equation (4.19) defines the update gate, zt, which controls how much infor-
mation from the previous hidden state, ht − 1, transfers current hidden state, ht. The σ 
term in Eqs. (4.18) and (4.19) represents the sigmoid activation function. Equation 
(4.20) defines nt—an intermediate state involved in the calculation of hidden state, 
ht. As previously stated in Sect. 5.5.1, the ⊙ symbol denotes the Hadamard product, 
which performs element-wise multiplication between two variables. A schematic 
diagram of an LSTM cell (a) and a GRU cell (b) is shown in Fig. 4.10.

4.6  Generative Adversarial Networks (GANs)

Generative networks represent a class of deep learning algorithms which seek to 
generate data samples which are representative of the training dataset. Popular gen-
erative networks include VAEs discussed in Sect. 4.3 and generative adversarial 
networks (GANs). GANs were first proposed by Goodfellow et al. in 2014 [81] and 
have since seen success in the generation of both images and videos. In medical 
imaging and radiation oncology, GANs have been applied to tasks such as the gen-
erating synthetic CT images from MRI scans [82], denoising low-dose CT images, 
[83], and reducing the sparsity of training data for a deep reinforcement treatment 
decision network by generating patient examples [35]. Although GANs have proven 
themselves to be a powerful tool for synthetic data generation, a major drawback is 
that they are notoriously difficult to train.
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4.6.1  Vanilla GANs

GANs are composed of two networks that compete against each other: a generator, 
which generates “fake” data using random variables sampled from a user-selected 
distribution, and a discriminator, whose job is to differentiate between real data and 
fake data. Both networks are typically either feedforward networks or CNNs. The 
generator and discriminator are trained simultaneously under the framework of a 
two-player minimax game with a value function defined as:

 

minmax (log ) log~ ~G D x p x x p zV D G D D G
data z

,( ) = ( )( ) + − ( )( )( ) ( ) x z1 (( )( )  (4.22)

During training, V(D, G) is minimized with respect to a discriminator, D, while 
simultaneously maximizing the function with respect to a generator, G. The expres-
sion D(x)) represents the probability (according to the discriminator) that sample x 
came from the real dataset, while the expression G(z) represents the mapping (by 
means of the generator) from a distribution z to a fake sample. The term pdata 
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represents the distribution of the data given by x but is not explicitly known by the 
user. The variable pz represents the distribution (such as a uniform or Gaussian dis-
tribution) that z is randomly sampled from. As the discriminator learns to recognize 
real from fake data, the generator is simultaneously learning to generate better 
fakes. The action operation performed by the generator can be thought of as a map-
ping from the user-chosen distribution pz to the model distribution, pg. The goal of 
the generator is then to minimize the divergence between pg and the data distribu-
tion, px. The optimal model is achieved when the discriminator predicts both real 
and generated samples to be genuine with equal probability (i.e., 
D(x)) = D(G(z))) = 0.5) (Fig. 4.11).

4.6.2  Common GAN Variants: DCGAN, WGAN

Since their conception, there have been several variants on vanilla GANs. One such 
variant which is noteworthy is the Wasserstein GAN (WGAN), which was shown 
both in theory and practice to have more stable (and thus easier) training than the 
vanilla GAN [84]. WGAN achieves this improved performance by defining the dis-
tribution divergence to be minimized as an approximation of the earthmover (also 
known as the Wasserstein-1) distance, resulting in a value function:

 
minmax ~ ~G D

x p z pV G D D D G
data z

,( ) = ( )  − ( )( )  x z  (4.23)

The earthmover distance is theoretically advantageous for training because under 
some weak assumptions it can be shown to be continuous everywhere and differen-
tiable almost everywhere [84].
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Fig. 4.11 Generative Adversarial Network (GAN)
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Another type of GAN is the Deep Convolutional (DC) GAN [85]. The generator 
in a DCGAN is a CNN architecture. In addition, DCGAN allows for the generation 
of labeled data. This is performed by randomly assigning a label to the randomly 
sampled variables fed into the generator and teaching the discriminator to not only 
recognize fake data but to correctly assign labels to data.

4.7  Deep Reinforcement Learning (DRL)

DRL represents a combination of deep learning and reinforcement learning, which 
allows a network to perform decision-making tasks in an unsupervised manner. 
Reinforcement learning (RL) can be conceptualized as a type of machine learning 
in which an agent (i.e., an optimal search algorithm) learns to make a series of 
sequential decisions based on interactions with its environment (a Markov Decision 
Process [MDP]) in order to maximize a cumulative reward function. This method of 
learning based on external stimuli is interesting in its own right because it is similar 
to the way humans (or other biological agents) learn. DRL has been found to be 
particularly successful at performing a variety of decision-making tasks, managing 
to beat top human players in games such as poker, chess, and Go! [86]. A variant of 
DLR is deep Q-learning (DQN); In DQN, as the agent chooses the optimal action 
given the state of its environment by maximizing the Q-function, defined as the 
average discounted sum of rewards from the agent’s current state up through all 
future steps. DQN has been shown to be capable of mimicking clinician dose adap-
tion decisions in a radiotherapy artificial environment [35].

4.8  Current Challenges and Future Directions

Despite the promising role of deep learning in medicine and radiological sciences, 
there remain several challenges which must be addressed for the continued incorpo-
ration of deep learning applications into the clinical workflow. One challenge is the 
need for large, accessible datasets for training and validation of deep learning mod-
els. There is an active field of work in creating systems which allow for inter- 
institutional sharing of data while maintaining HIPAA and IRB compliance as well 
as for ensuring that data is curated or “farmed” by institutions in a standardized and 
easily usable fashion [87].

Another important challenge relates to the need for acceptance of deep learning 
methods by the greater medical community. A valid concern for the clinical use of 
deep learning models is that they are akin to black boxes—it is very difficult to 
interpret how a deep learning model “thinks” when it maps input data to an output 
prediction [88]. This property leaves predictions made by deep learning methods 
vulnerable to biases or errors which could harm the quality of patient care. In order 
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to gain buy-in from clinicians, further progress must be made to develop techniques, 
which allow medical staff to intuitively interpret the predictions made by deep 
learning models. Recent developments in deep learning visualization have already 
begun the process of opening the black box, particularly for image classification 
models. These deep learning visualization techniques can help users to understand 
what parts of an image contribute most to the network’s final decision. For example, 
Grad-CAM is a technique which provides insight into the decision process for 
CNNs by creating a localization map which shows which regions of an input image 
are most important in determining the networks final prediction [89]. Saliency maps 
represent another method for visualizing classification CNNs; saliency maps use the 
derivative of the class score with respect to the image value at a given point to show 
which pixels in a given image have the largest impact on a given class prediction 
[90]. Another way to gain a deeper understanding of the inner workings of a deep 
neural network is to visualize the features that individual parts of the network have 
learned to identify. This can be achieved by attaching a deconvolutional neural net-
work to each layer in a CNN to produce feature maps [91].

4.9  Conclusion

Deep machine learning methods have led to significant breakthroughs in the field of 
artificial intelligence. As large datasets become more readily accessible across dif-
ferent domains, deep learning will continue to contribute significantly to many 
fields. Deep learning technologies have already begun to make an impact in medi-
cine, and data-heavy specialties such as radiology and radiation oncology are poised 
to be particularly impacted by these innovations. While any prediction of the future 
is bound to have a large degree of uncertainty, one can gain some insight into how 
deep learning might impact radiology and radiation oncology in the future from 
Amara’s law: we tend to overestimate the effect of a technology in the short run and 
underestimate the effect in the long run [92]. In other words, humans tend to have 
high expectations for emerging technologies, only to become disillusioned once the 
initial hype wears off and inherent limitations are more widely understood. At the 
time of this book’s publication, it is the authors’ belief that society is approaching 
the tail end of the deep learning hype cycle. With respect to the medical field, this 
observation is perhaps even more certain because despite early successes, the clini-
cal implementation of deep learning methods still faces significant challenges with 
regard to interpretability and transparency—which are both necessary to ensure that 
these technologies follow the imperative to first, do no harm and are ethically 
accountable to the patients they serve. As deep learning continues on the arduous 
journey that is benchtop to bedside translation, it will become all too easy to grow 
pessimistic and underestimate its value. It therefore bears remembering that the 
future for deep learning is very bright indeed.
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Learning
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and Issam El Naqa

5.1  Introduction

Quantum mechanics is arguably among the most influential inventions of the twen-
tieth century in physics. Advancement of this fundamental theory and its application 
have led to better understanding of the laws of nature that govern our surrounding 
universe as well as the invention of many modern electronic devices such as transis-
tors, electron microscopes, lasers, magnetic resonance imaging, and LEDs. The 
invention of the transistor single handedly revolutionized modern industrial and 
consumer technologies by significantly downsizing their footprint, thus reducing 
their power requirements. This is particularly true in the case of personal computers, 
which were originally powered by cumbersome vacuum tubes. Further advance-
ments of transistor technology, from point-contact transistors to integrated circuits 
to very large-scale integrated processes, gradually made computers cheaper, faster, 
and computationally more powerful, versatile, and fit for general purpose applica-
tions making them an indispensable component of today’s modern society.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83047-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-83047-2_5#DOI
mailto:Dipesh.Niraula@moffitt.org
mailto:Issam.ElNaqa@moffitt.org
mailto:jamalina@umich.edu
mailto:jpakela@med.umich.edu


80

Naturally, software technology has advanced tremendously along with the hard-
ware components. In 1936, Alan Turing devised a conceptual cognitive system called 
the Turing machine formally introducing a mathematical model of cognitive computa-
tion which aided in the theoretical development of modern artificial intelligence in 
computer science. Right after, Claude Shannon implemented Boolean logic (binary) 
in programming in 1937 as a primitive electromagnetic computer and thereby show-
ing that a machine could operate merely with “0”s and “1”s [1]. Software tools such 
as compilers and interpreters, which translates high-level programming language to 
machine level binary language, led to a rapid advancement in software technology by 
making it possible to program a computer without having to understand the minute 
hardware details. This separation of duty simplified the task of software development 
and programming which transformed the world into a digital era.

Current commercial (mainstream) computing paradigm is based on deterministic 
classical Boolean logic. Even though hardware technology extensively may apply 
quantum mechanical principles for its advancement, the computational process itself 
is purely classical and is based on binary logic. To better harness the power of quan-
tum mechanics at the computational level, computer scientists and physicists have 
been actively working on merging quantum mechanics, information theory, and 
computation to create a new computing paradigm known as quantum computing [2, 
3]. The original inspiration for this concept was presented by notable physicist and 
Nobel prize laureate Richard Feynman in the 1970s. He postulated that a quantum 
computer can solve problems that classical computers cannot. This idea followed a 
proposal by Paul Benioff of a quantum mechanical model of the Turing machine [4].

This new quantum computing paradigm is vastly different from the current clas-
sical one at both the software and hardware levels. Unlike the basic unit of classical 
information/computation, a bit, which can either be a “0” or an “1,” its quantum 
counterpart, a qubit, can exist in a mixed state; a qubit can be represented by the 
linear superposition as,

 
� � �c c0 10 1� �,  (5.1)

where the probability amplitude c0 and c1 are complex numbers and thus can take 
infinitely many values. Only upon an event, i.e., a quantum measurement, |ψ〉 will 
collapse to either |0〉 or |1〉 binary quantum state with a probability of |c0|2 or |c1|2, 
respectively. By extension, an n qubit register can represent 2n states simultane-
ously. For instance, for a 2-qubit system, a uniform superposition state, 

� � � � �� �1

2
00 01 10 11  represents four states simultaneously. This property of 

quantum state is known as quantum superposition which further allows for quantum 
parallelism providing quantum computing with a much faster computational speed 
than its classical counterpart.

Quantum parallelism is the ability to simultaneously operate on all the superim-
posed state in parallel. Since the number of states represented by qubit register 
grows exponentially with the number of registers, an operation performed on a 
quantum computer would have taken an exponentially large of operations on a clas-
sical computer with the same numbers of registers. One trade-off of quantum 
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parallelism is that the probability of measuring one particular state out of 2n states 
also decreases exponentially. The main challenge of any quantum algorithm is to 
overcome this, which will be discussed in Sect. 5.4 in the context of common quan-
tum algorithms devised by Peter Shor [5] and Grover [6].

Another quantum mechanical phenomenon relevant to quantum computing is 

quantum entanglement. For instance an entangled Bell State: 
1

2
00 11�� � , has a 

50% chance of being measured in either |00〉 state and 50% chance of being mea-
sured in either |11〉 state. Moreover, the two qubits are correlated, i.e., if the first 
qubit is measured to be in |1〉 state, the second qubit will also collapse in |1〉 state. 
Entanglement phenomenon provides quantum computing with a resource absent in 
classical computing that makes classically impossible processes, like super-dense 
coding and quantum teleportation, possible. An actively sought out real-life applica-
tion of quantum communication is to create an eavesdrop-proof channel for key 
distribution in cryptography [7]. In the world of computing, this translates to an 
efficient representation of highly correlated information, which is still a challenge 
in classical computation.

While quantum algorithm and quatnum information hold promises for several 
improvements, quantum computers are the devices necessary to make those theo-
retical gains a reality. Thus there has been a growing interest in research and devel-
opvent of quantum hardwares and quantum computers from both the private sector 
and the government [8–10]. A quantum computer is built from quantum circuit and 
quantum gates, just like classical computers are made up of electrical circuits and 
logic gates. Physical realization of quantum circuit has been achieved through dif-
ferent means: trapped ions [11], nuclear magnetic resonance (NMR), and linear 
optical systems, and superconducting solid-state system [12]. Currently, supercon-
ducting solid-state system is the main focus in commercial sectors and companies, 
with Google, IBM, Microsoft, and Intel racing to build a universal quantum com-
puter, whereas NMR, optical and trap ion computing systems are most actively 
researched in academic and governmental institutes.

In the era of big data analytic and machine learning, an emerging hybrid field 
capturing the best of quantum computing and machine learning has been generating 
novel ideas such as quantum neural networks [13], quantum convolutional neural 
network [14], quantum generative adversarial networks [15], and quantum rein-
forcement learning [16, 17]. The deep learning half of such hybrid models equip 
these tools with the ability to represent complex data patterns while the quantum 
information half makes them faster and less prone to noisy fluctuations in data.

Although quantum technology is still in its infancy, it has the potential to bring 
about a new era in the world of computing, and by extension a new era in machine 
learning. This chapter provides a high-level overview of quantum computing, 
including a summary of the current state of quantum hardware development, a 
review of the two major quantum computing algorithms which promise quantum 
supremacy over classical computers—the Shor’s algorithm and the Grover’s 

5 Quantum Computing for Machine Learning



82

algorithm, a review of the emerging field of quantum machine learning—including 
quantum deep neural networks and quantum reinforcement learning, and finally, a 
review of current applications of quantum computing in medical physics at the date 
of this publication.

5.2  Postulates of Quantum Mechanics

Some working knowledge of quantum mechanics and linear algebra may be neces-
sary to follow through the rest of this chapter. To facilitate this, six postulates that 
concisely cover the fundamentals of quantum mechanics are reviewed in this sec-
tion. The origin of these postulates is largely based on Dirac–von Neumann axioms, 
functional analysis, and is part of the standard quantum physics curriculum. 
Furthermore, descriptions of mathematical tools necessary to understand the postu-
lates are subsequently presented. For a basic understanding of linear algebra, the 
readers may refer to [18].

 1. The state of a quantum mechanical system is completely represented by a nor-
malized ket |ψ〉.
• Mathematically, kets are vectors that reside in an inner-product vector space 

over complex number field called Hilbert Space. While Hilbert Space can 
represent infinite dimensional space, the dimensionality of the Hilbert space 
is determined by the physics of a problem.

• Vector spaces satisfy the closure property, i.e., the linear combination of any 
two vectors of a vector space must lie in the same vector space. This implies 
that the superposition of two states is also a state of the system: if |ψ0〉 and |ψ1〉 
are two possible states of a system, then so is |ψ〉 = c0|ψ0〉 + c1|ψ1〉, where c0 
and c1 are complex numbers.

• In Dirac notation, “bra” (〈|) is the dual of vector “ket” (|〉) and together in the 
bra-ket succession defines inner product. Mathematically, “bra” denotes a lin-
ear functional f : V → C that maps vector “ket” to a number in the complex 
plane. The Dirac notation simplifies the inner product notation especially for 
states of continuous variables, which are represented in terms of wave func-
tions, i.e.,

 
� � � �� � � � � ��dx x x .  

 2. Every physical observable attribute of a quantum mechanical system is described 
by a Hermitian operator Ô that acts on kets describing that system.
• Observables are physically measurable attributes such as position, linear and 

angular momentum, energy, and so on.
• An operator is Hermitian if it is equal to its conjugate transpose, i.e., O = O†. 

This property guarantees real eigenvalues necessary for the observables to be 
physical.
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• An operator Ô acting on a ket |ψ〉 is denoted by left multiplication, i.e., 
� �� �Ô . In general, the operation changes the state of the quantum system.

 3. The only possible result of a measurement of an observable O is one of the 
eigenvalues of the corresponding operator Ô.
• This postulate describes the source of the word “quantum.” If the observable 

is of continuous spectrum, like position or momentum, then the measurement 
will give us classical results. However, if the observable has a discrete spec-
trum, like the angular momentum of an orbiting electron, the measurement 
will yield discrete set of values in multiples of Planck’s constant.

 4. Upon a measurement of the observable O on a quantum mechanical system in 
the state |ψ〉, the probability of obtaining the eigenvalue on is given by the square 
of the inner product of |ψ〉 with the eigenstate |on〉, i.e., |〈on| ψ〉|2.
• Besides having real eigenvalues, the eigenstates of a Hermitian operator are 

orthogonal, i.e., 〈oi| oj〉 = δij, where the Kronecker delta δij = 1 for i = j and δij = 
0 otherwise. The orthogonal eigenstate spans the space of states and forms a 
basis. This means that the state of a quantum mechanical system can be 
expanded as a linear combination of eigenstate of a Hermitian operator with 
complex coefficients.

 
� � ��� �

n
n nc o

 

• The complex coefficients, 〈on| ψ〉 = cn, represent the “probability amplitude” 
associated with the eigenstate |on〉. This means that |ψ〉 = ∑n〈on| ψ〉 |on〉 and 
hence 〈ψ| ψ〉 = ∑n|〈on| ψ〉|2. Since 〈ψ| ψ〉 is the total probability and sums to 1, 
|〈on| ψ〉|2 are the individual probability associated with measuring eigen-
states on.

• The probabilistic interpretation requires the normalization of kets, i.e., 

〈ψ| ψ〉 = 1, which can be achieved by dividing |ψ′〉 by its norm, � �� �| , 
where prime notation represents the state before normalization.

 5. Immediately after the measurement of the observable O that yielded the value on, 
the state of the system collapses to the normalized eigenstate |on〉.
• This postulate is “counterintuitive” with respect to quantum mechanics. 

Measurements of observable O after preparing several identical quantum 
mechanical system in state |ψ〉 can yield different results. This is to be 
expected as quantum mechanical states are probabilistic in nature and can 
exist in superimposed state. However, carrying out a second measurement 
immediately on a system that yielded on value in the first measurement will 
always yield on.

 6. The time evolution of a quantum mechanical system preserves the normalization 
of the associated ket. The time evolution of the state is a unitary transformation 
described by � �t U t t t� � � � � � �ˆ , 0 0 .
• The preservation of normalization during time evolution of a quantum 

mechanical system implies conservation of probability: the probability of 
finding a system in an eigenstate summed over all possible eigenstate must be 
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1. This is ensured by setting the time evolution operator as a unitary 
transformation.

• Mathematically, unitary transformations preserve inner products: the inner 
product of kets are equal to the inner products of the transformed kets. i.e., 
〈ψ| ψ〉 = (〈ψ|U†)(U|ψ〉) which is true when UU† = I, implying U† = U−1. By 
symmetry of the inner product operations, U†U = I = UU†.

• Practically, unitary transformations are reversible operations such as rotation 
and reflection, i.e., an inverse transformation of equal magnitude will nullify 
the forward transformation and send a state back to its original state. All phys-
ical quantum gates used in quantum circuit are unitary operators.

5.3  Quantum Hardware

Quantum hardware are devices that can implement one of the several quantum 
objects and/or phenomena that exists in nature. For instance, optical quantum 
devices use polarization of a photon as a quantum state with mirrors, beam splitters, 
phase shifters, and interferometers as quantum gates. Use of photons are advanta-
geous for its stability, yet the lack of photon to photon interaction is a major draw-
back. Similarly, trapped ion quantum computing devices are based on trapping ions 
by creating a saddle shaped electric potential well via an oscillating field. The quan-
tum state is the atomic spin (magnet), manipulated by shining laser onto the ion. 
The most popular and promising quantum objects currently are the superconduc-
tors. Superconducting quantum computer has been actively developed by tech 
giants such as IBM, Google, and Intel in pursuit of creating a universal quantum 
computer. In a superconductor, pairs of electrons, known as Cooper pairs, act as the 
basic charge carrier. Each pair has an integer number spin associated, therefore act-
ing as a boson in effect. Qubits are then defined as either the phase, charge, or the 
flux of the pair.

Aside from the underlying quantum object, quantum hardware can be categorized 
in terms of their functionality. Optical quantum devices, for instance, are being 
developed for quantum communication, while superconducting quantum computing 
devices are more for general purpose. Radiation oncology, in particular, has found a 
use of quantum annealers and universal quantum computing (simulators) to tackle 
various optimization problems such as inverse treatment planning problems [19].

5.3.1  Quantum Annealers

Quantum annealers refer to a class of quantum hardware which solve optimization 
problems through the process of quantum annealing. First proposed by Kadowaki 
and Nishimori [20], quantum annealing exploits the result of the quantum adiabatic 
theorem, which states that when a quantum system undergoes a gradual change in 
its total energy from Hi to Hf, if it starts out in the nth eigenstate of Hi, it will end up 
in the corresponding nth eigenstate of Hf. This means that a quantum system can be 
constructed to start in the ground state of a known (or solvable) objective function, 
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and then gradually shifted into the ground state of the objective function of interest 
using an annealing coefficient,  t� � :

 
H t H t Hi� � � � � �f  .  

At the start of the optimization process, the annealing variable τ(t) is very large 
such that H t Hi  � � . By the end of the optimization process,  t� �  approaches 
0 and the system is now in the lowest energy eigenstate of the Hamiltonian defined 
by the objective function of interest, H Htend f� � � . Thus, similar to simulated anneal-
ing, quantum annealing is guaranteed to find the global optimal solution if allowed 
to run long enough, and theoretical and experimental results suggest that quantum 
annealing boasts performance benefits over its classical counterpart, simulated 
annealing [21, 22].

Initial studies on quantum annealing were performed as simulations on classical 
computers [23]; however, classical simulation of this quantum process is computa-
tionally expensive and therefore impractical for higher order objective functions—
such as those which would be necessary for many real-world problems. Quantum 
annealers are devices which use quantum hardware to physically realize the quan-
tum annealing process. The major developer of quantum annealers to date is DWave 
INC. DWave quantum annealers use qubits which are made up of superconducting 
loops of current—the direction of the resulting magnetic field (down vs. up) defines 
the classical binary states of the qubit (0 vs. 1), but as quantum objects they can also 
exist in both states simultaneously. As of this time DWave hardware supports a 
maximum of 2000 qubits, which can represent 22000 unique states.

5.3.2  Universal Quantum Computers

Universal quantum computers are analogous to the Turing’s universal machine. For 
a computer to be universal, it must be capable of taking any arbitrary set of inputs 
or instructions and convert them to an arbitrary set of corresponding outputs. This 
requirement is easily satisfied by classical computing, though not as straightforward 
in quantum computing. In the quantum world, not every observable commute: 
observable A and B commute if the order in which the operations are carried out 
does not affect the result, i.e., AB − BA = 0. For quantum computer to be universal, 
it must be able to handle non-commuting observable.

For instance as in [24], consider implementing the unitary operation, Û ei aX bZ� �� � ,  
where X and Z are some non-commuting observable. Note that any observable A 
(Hermitian) can be associated to a unitary operation by U = e(iA). Since X and Z do 
not commute, ei(aX + bZ) ≠ eiaXeibZ. However, by breaking down the operation in n small 

slices, we can use the approximation ˆ limU e en

iaX

n

ibZ

n

n

�
�

�
�

�

�
��� . This yields an error 

that scales as 1/n2. Combining n slices, target U is approximated with an error that 
scales as 1/n. So by increasing the number of slices, it is possible to get as close to 
U as needed. As long as enough slices are maintained, i.e. divide the task in hand 
into enough small operations, universality of the circuit-based quantum computer 
can be gaurenteed.
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Currently commercial sectors including IBM, Google, Intel, and Microsoft are 
heavily invested in creating a general purpose universal quantum computer power 
enough to carry out practical tasks. State-of-the-art universal quantum computers 
have crossed the 50 plus qubit marker and will be more powerful in the future with 
speculations of orders of magnitude increase in the next few years. An important 
challenge currently faced in quantum computer development is the ability to main-
tain a useful number of qubits in coherence long enough to perform the calculations 
of interest. It is therefore important to note that at this time, many of the quantum 
algorithms proposed in literature are tested by simulating quantum states on classi-
cal computers rather than through an actual quantum computing hardware. As long 
as enough slices are maintained, i.e. divide the task in hand into enough small oper-
ations, universality of the circuit-based quantum computer can be gaurenteed.

5.4  Common Quantum Computing Algorithms

For a quantum algorithm to be useful, it has to at least theoretically outperform the 
best classical algorithm given their inherent complexity.

5.4.1  Grover’s Algorithm

Grover’s algorithm is a quantum search algorithm designed to carry out unstruc-
tured search. It can speed up an unstructured search problem quadratically faster 
than any classical algorithm and its probability amplitude amplification subroutine 
is applicable beyond a mere search problem [24]; in later section we utilize Grover 
iteration as an optimization procedure.

Unstructured search problem is a task to locate a marked item m from a large list 
of N items. On average, a classical algorithm takes N/2 steps to locate m and in the 
worst case scenario takes N steps. With the probability amplification trick, Grover’s 
algorithm can find m in about N  steps, providing a quadratic speedup. For 
instance, for a list of 300 million unstructured items, classical search algorithms on 
average take 150 million operations, while Grover’s algorithm will take only about 
17 thousands. Furthermore, it does not utilize the internal structure of the items, 
making it a generic algorithm, also commonly known as a black box.

Before carrying out Grover iteration, N items are represented by a uniformly 
distributed 2n superimposed quantum states where n is the number of qubits. This 
process requires preparing quantum states, usually prepared in |0〉 state, which is 
then passed through a Hadamard gate to create a superimposed state. Mathematically, 

a Hadamard gate is a unitary operation that transforms |0〉 to 
0 1

2

+
. In matrix 

representation, H �
�

�

�
�

�

�
�

1

2

1 1

1 1
 and 0

1

0
�
�

�
�

�

�
� . For n qubits, n Hadamard gates 

are required to create 2n superimposed states. For example, in a three qubit system 
the eight superimposed states are
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(5.2)

Grover iteration comprises a series of two operations, i.e., ˆ ˆ ˆG DO= , where Ô 
and D̂ stand for phase oracle and diffuser operation. Figure 5.1 presents a schematic 
of one Grover iteration in a three qubit quantum circuit. In practice, a series of 

Grover Iteration Measurement

|0〉 H

H

H

Oracle Diffuser|0〉

|0〉

measure

Fig. 5.1 Schematic of a Grover amplification procedure on a three qubit quantum circuit. Before 
carrying out the Grover amplification, the qubits are created in |0〉 state which are then passed 
through Hadamard gates, creating a uniform superimposed state. One Grover iteration is com-
posed of a phase oracle and a diffuser. Quantum measurement is carried out at the end to obtain 
the result

Fig. 5.2 Visualization of Grover iteration via probability amplitude graph (top row) and geometri-
cal interpretation (bottom row) in the plane spanned by marked (|m〉 and unmarked state (|um〉). 
Phase oracle, Ô, flips the probability amplitude sign of |m〉 and Diffuser, D̂, inverts the superim-
posed state |a〉 about the mean N M N N− 2 /  amplifying |m〉. Geometrically, Ô is a reflection 
across |um〉 and D̂ is a reflection across |a〉. Collectively, they result in a rotation of |a〉 by an odd 
number multiple of the angle subtended by |a〉 and |um〉
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Grover iteration are carried out as permitted prior to measurement. This strengthens 
the chance of obtaining the marked item from a measurement.

The Phase Oracle operator Ô flips the probability amplitude sign of the marked 
state, |m〉, and then Diffuser operator, D̂, also known as inversion about mean, 
inverts the whole superimposed state about the mean of the inverted marked state 
and remaining unmarked states |um〉 as shown in Fig. 5.2. The mean on the proba-
bility amplitude, 1 / N , decreases to N M N N�� �2 /  after the phase oracle 
operation; M is the number of marked states. Since the mean lies closer to the 
unmarked states, the inversion amplifies |m〉 while diminishing |um〉.

Mathematically, Phase Oracle ˆ ˆ –O I m= 2  〈m| and Diffuser ˆ ˆD a a I� �2 . 

Suppose the third state, |010〉, of the superimposed three qubit system of Eq. 5.2 is 
the marked state, then the operators and transformations from the operations are as 
follows:

 

Ô a a m m a� � � � �
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Since both of the operators are unitary, the total probability after each transfor-
mation is 1. The probability amplitude of the marked state |010〉 flips after the first 
operation and then amplifies to five times as much as the unmarked states. After one 
Grover iteration, the chances of obtaining the marked state |010〉 from a quantum 

measurement is 5 2 8 78 1
2

/ . %= . This chance can be increased with repetition of 

Grover iteration, though there is a limit which when crossed, will start behaving 
erratically. The limit can be determined by geometrical analysis of the operators.

Geometrically, Grover iteration can be understood in terms of two unitary transfor-
mations: reflection and rotation, in the plane spanned by the basis |m〉 and |um〉; |um〉  

can be constructed by removing |m〉 from |a〉 as um �
�

�
�

N

N M
a

M

N M
m .  

As shown in Fig. 5.2, the phase oracle is a reflection along |um〉 and the diffuser is 
a reflection along |a〉. These two reflections result in a rotation of the superimposed 
state, |a〉 by 3θ, where θ is the angle subtended by |a〉 and |um〉. It can be shown that 
for t Grover iterations, |a〉 will subtend an angle of (2t  +  1)θ. Since the goal of 
Grover iteration is to rotate |a〉 toward |m〉 as much as possible, t must be limited so 

that 2 1
2

t �� � ��
�

 where the angle � � � � � ��

�
��

�

�
��arccos arccosa

N M

N
|um . 

Similarly, there is limit on the number of marked state that can be amplified for a 
given number of qubits. Since one Grover iteration rotates |a〉 by 3θ, |a〉 subtending 
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θ > 30° will rotate past |m〉 in to the second quadrant. This can be avoided by using 
more qubits.

5.4.2  Quantum Phase Estimation

Phase estimation is key in many quantum computing algorithms, acting as a subrou-
tine to perform complex computational tasks, one of which is the Shor’s factoriza-
tion algorithm. Hence, it is imperative to understand phase estimation in its entirety.

Given a unitary operator U that has an eigenvector |u〉 with eigenvalue e2πiθ, the 
goal of the phase estimation algorithm is to estimate θ. The setup involves two reg-
isters: a counting register containing n qubits to store 2nθ values, initialized in the 
state |0〉, and a second register in the state |Ψ〉, containing as many qubits necessary. 
Mathematically, the initial setup, Ψ0, is as follows:

 
� �0 0� �� �n .  

A Hadamard transformation is applied to the counting register:

 
� �1
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2
0 1� �� ��

n

n
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Next, a set of controlled-U operations is applied on the second register, with U 
raised to successive powers of two. Note that, by definition of U, applying U to 
|Ψ〉 gives:
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The final state of the first register is now:
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Without going into much detail, the quantum Fourier transform (QFT) operation 
can be expressed as:

 

QFT x e e e
n
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Note the similarities in form with Ψ2. Therefore, applying inverse QFT to Ψ2 will 
recover the required state:
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Measuring |Ψ3〉, which peaks near x = 2nθ, obtains the phase with high probabil-
ity, given the x is an integer:

 
� �4 2� � �� �n� .  

Even if x is not an integer, the peak is still near x = 2nθ with probability better 
than 40%.

5.4.3  Shor’s Algorithm

Factoring a composite number into two prime numbers is the core of many cryptog-
raphy algorithms. Since the security of information hinges on the fact that no clas-
sical algorithm can break an RSA encryption fast enough, successful implementation 
of Shor’s algorithm in the real world is highly sought after.

To find the factors for a number N, the key point is to find the order of a modulo 
N, for a random number a such that 1 < a ≤ N − 1. The order, r, is the least positive 
integer r that satisfies ar mod N = 1. If r is odd or r is even but ar/2 = −1(mod N), 
repeat the steps with a different random number. Otherwise, the factors for N will be 
gcd(ar/2 ± 1, N).

For quantum factorization, a quantum register that represents the number N is 
first prepared in equal superposition:

 
0 0 0 1
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It then utilizes a QPE subroutine to apply modular exponentiation, producing an 
entangled state:

 x

x

n

x a N
�

�

�
0

2 1

� �mod .
 

Finally, applying an inverse quantum Fourier transform followed by a measure-
ment yields the desired order r. The post-processing steps to eventually obtain the 
factors is the same as the classical method, through the use of gcd.

On a quantum computer, the complete Shor’s algorithm can factor a number in 
polynomial time. In contrast, the current best classical computer factors a composite 
number in sub-exponential time, using the general number field sieve method. That 
being said, with the development of a quantum computer being on hold, the factor-
ization of large composite numbers is not yet feasible. IBM first demonstrated 
Shor’s algorithm, factoring 15 into 3 × 5 with 7 qubits, using NMR implementation 
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[25]. Following IBM’s success, two other groups have successfully implemented 
the algorithm through the use of photonic qubits, and one group factorized with 
solid-state qubits [26–28]. To date, the largest integer that has been successfully 
factored with Shor’s algorithm experimentally is 21.

Evidently, a real-world implementation of Shor’s algorithm for large enough N 
to be useful in breaking an RSA encryption is still an open problem, mainly due to 
the limitations of number of qubits readily available for use with a universal quan-
tum computer. Currently, the largest integer factorization for a quantum algorithm 
is 1,005,973, through quantum annealing, using 89 qubits [29]. However, this is an 
evolving field and better quantum computing resources are emerging.

5.4.4  Quantum Machine Learning

In recent years, there is an emergence of interweaving quantum with machine learn-
ing concepts in solving complex data analytic problems. The intrinsic characteris-
tics of quantum mechanics, such as quantum coherence, entanglement, and 
parallelism, offer valuable tools to advance the current capabilities of machine and 
deep learning algorithms, leading to the emergence of the new field of quantum 
machine learning. The field of quantum machine learning promises to solve current 
data analytic problems exponentially faster than their classical counterparts. In 
addition, quantum machine learning can overcome several hindrances encountered 
in classical machine learning algorithms, such as the sparse matrix constraint and 
poor performance with noisy data. As real-world data are likely to be noisy and 
dense, quantum machine learning is certainly an attractive prospect to overcome 
current barriers in classical machine and deep learning applications.

5.4.4.1  Quantum Support Vector Machines
A support vector machine (SVM) solves a supervised classification problem by 
finding a hyperplane that separates two classes of data with maximum margin [30] 
as described in Chap. 3.

Given a set of M training data points, {(x1, y1), …, xM, yM)}, where yi ∈ {−1, 1}, 
depends on the class where xi belongs to. In the simplest solution where the hyper-
plane is linear, the output of the SVM is of the form yi = ±(w·xi + b), where w is the 
normal vector to the hyperplane and b/|w| is the offset from the origin. To find the 
optimal hyperplane, the goal of the SVM is to minimize

 

1

2

2

1

w �
�
�C
i

M

i�  
(5.3)

subject to the constraint yi(w·xi + b) ≥ 1 − ξi for all i, and ξi ≥ 0. Here, ξ refers to 
the classification error and C is the cost parameter. The dual formulation of the 
optimization problem can be defined by introducing the Karush–Kuhn–Tucker mul-
tipliers. Instead, one can maxmize:
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subject to the constraints 
i

M

i iy
�
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0� , αi ∈ [0, C] for all training data points. Kj,k 

function is the kernel matrix, which needs to be evaluated across all training data 
points, and then solving the dual form by finding the optimal αj.

There are currently two known implementations to apply quantum mechanics in 
SVMs. In both versions, the classical data x is first mapped to a quantum state 
|Φ(x)〉. A straightforward method of a quantum SVM is to treat it as a discriminator, 
where the quantum data is fully trained on a quantum computer, producing the sepa-
rating hyperplane upon measurement [31]. A different approach uses quantum com-
puter to estimate the kernel function, which can then be trained like a classical SVM 
[32]. This method approximates the SVM as a least-squares problem and utilizes 
quantum matrix inversion to formulate an optimal solution. This least-squares 
approximation has also been proven experimentally with NMR for a handwritten 
digit classification problem [33].

The kernel estimation is where the quantum SVMs give an advantage over its 
classical counterpart. With quantum, SVMs have been proven to give exponential 
speedup. Introducing quantum also allows for dense training vectors to be used, 
which would be useful for real-world applications.

5.4.4.2  Quantum Principal Component Analysis
Principal component analysis (PCA) is often used as a dimensionality reduction 
tool in processing high dimensional data set. PCA finds the principal components 
(eigenvectors) of the covariance matrix of a zero mean dataset and then performs a 
change of basis. PCA then projects the high dimensional data set into the low- 
dimension subspace constructed from the first few principal components by dis-
carding the eigenvectors corresponding to eigenvalues below a threshold. The main 
idea is that the first principle component of the covariance matrix corresponds to the 
largest variance and thus represents the most important behavior of the system.

The quantum PCA (qPCA) [34] utilizes the QPE algorithm and density matrix 
exponentiation in conducting PCA) on a quantum state. Once the quantum states 
(represented by density matrix ρ), corresponding to the covariance matrix of a data-
set, are generated using oracles, a unitary operator e−iρt is defined by making n cop-
ies of ρ and the QPE algorithm is carried out for the spectral decomposition (finding 
eigenvalue and eigenvector) of the covariance matrix. qPCA is based on the princi-
pal of quantum tomography: since the state of a quantum before the measurement 
cannot be known, it is necessary to prepare many copies of a given state and perform 
measurements of different observables for analyzing the results statistically. A 
detailed account including the limitations of qPCA is given in Ref. [34]. The com-
putational time required for qPCA is in the order  R dlog� �  for the R ranked 
d-dimensional ρ matrix.

5.4.4.3  Quantum Bayesian Network
Bayesian Network (BN) are probabilistic directed acyclic graphs (DAG), where 
nodes represent random variables and edges represent the conditional dependence 
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between the nodes. BN are a widely used machine learning tool that can be prepared 
from expert knowledge or can be learned directly from data and then used to 
make inferences. Each node is assigned with a conditional probability distribution 

P x xi Ai� �  denoting the probability of the variable Xi conditioned on its parent’s 

value, xAi
. The conditional probability must be a non-negative real number and 

x
i A

i

i
P x x� � � � 1  for all i, where the sum over xi encompasses all the states that the 

random variable Xi can assume.
A quantum BN (qBN) [35] takes a BN and simply replaces probabilities of each 

node with complex number probability amplitudes. The conditional probability 

amplitude is a complex number and the probability amplitudes � x xi Ai� �  must 

now satisfy 
x

i A

i

i
x x� � � ��

2

1 . Mathematically, qBN can represent more informa-

tion than a classical BN due to the nature of the complex number system: given a 

qBN, a special BN can be constructed by squaring � x xi Ai� �  at each node; how-

ever, given a BN, a whole family of qBN can be constructed by taking a square root 

of P x xi Ai� �  times a phase factor, eiϕ. The phase factor eiϕ is an additional param-

eter that needs to be tuned according to the problem at hand.
The quantum probability theory can explain certain phenomena that the classical 

probability theory cannot. Accordingly, qBN has been successful in correctly model-
ing the decision making process in situations that is known to classically violate the 
Sure Thing Principle; Moreira et al. [36] with additional modification to the previous 
qBN [35, 37] have successfully modeled the prisoner’s dilemma and the two-stage 
gambling game. In addition, Borujeni et  al. [38] have proposed a quantum circuit 
representation of Bayesian network for the realization of a fully quantum qBNs.

5.4.4.4  Quantum Neural Network and Deep Learning
Neural Networks (NNs) are the current state-of-the-art tools for machine learning 
purposes popularized by its wide success in deep learning tasks in the field of com-
puter vision, computer audition, and natural language processing. NNs are scaled 
according to the complexity of the task at hand; a complex task requires more layers 
of NN than a simple task. However, the classical hardware has almost reached its 
size limit and will eventually cease to scale-down. This can be partly overcome by 
creating a quantum version of the NN (QNN) which can inherently process and 
store more information.

A unit of NN, perceptron or neuron, is made up of input nodes, weights, activa-
tion functions, and an output node. Training an NN is carried out via back- 
propagation and inference is carried out via feed forward on a trained 
NN. Back-propagation tunes the weights of the NN by minimizing a loss function 
via a gradient descent procedure. The tuned weights are then stored for inference. 
The QNN utilizes quantum mechanics and quantum computing in developing a 
quantum analogue of the perceptron and the related processes.
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Since QNN is an emerging technology, a universally accepted neuron design is 
still missing. However, all the common designs define a neuron as a unitary operator 
[13]. Since quantum mechanics is based on linear algebra, defining a non-linear 
activation function needs extra effort; this is achieved by the use of QPE algorithm. 
Similarly, the feed forward, loss function, and back-propagation are defined as 
parameterized unitary operators where the weight parameters are updated via quan-
tum dynamical descent procedure [39] mimicking time-evolution process. The 
weight parameters are defined as the quantum gate rotation angles. There also exist 
hybrid quantum-classical NN [24] where quantum circuits are used as the hidden 
layers: the weighted classical input layers are mapped to quantum circuits and the 
measurement statistics from the quantum circuit are then fed into a classical output 
layer. The parameter-shift [40] rule can be implemented for the back-propagation.

Along with the development of QNN and its realization, quantum analogue of 
other deep learning tools such as quantum convolution NN and quantum generative 
adversarial network have been actively developed. Li et al. [14] developed a QCNN 
framework using quantum parameterized circuit and variational quantum algorithm 
and demonstrated its feasibility by testing in MNIST and GTSRB datasets. Similarly, 
Zoufal et al. [15] implemented classical NN and quantum parameterized circuit in 
developing a QGAN framework; they trained and tested the framework in a simula-
tor and in real IBM Q Experience quantum processor, showing possible application 
in finance application.

5.4.4.5  Quantum Reinforcement Learning
Quantum Reinforcement Learning (QRL) [16] is another QML algorithm that uti-
lizes quantum computing in finding the optimal decision making policy in a dynam-
ical system. Since its inception, QRL has since been used in various tasks such as 
Robot Navigation [41] and human decision making [17]. Specifically, QRL imple-
ments Grover’s algorithm as the optimization tool in the classical RL framework 
reviewed in Chap. 3. In doing so, it takes the framework to the domain of quantum 
information which adds quadratic speed and presents a natural solution to the so- 
called exploration-exploitation trade-off.

As described in Chap. 3 and reviewed briefly here, classical RL [42, 43] consti-
tutes of five elements: agent, environment, policy, reward, and value function. 
Assuming Markov’s property, i.e., environment’s response at time t + 1 depends 
only on the state and action representations at time t, the RL task is mathematically 
described as a Markov Decision Process (MDP). MDP is a 4-tuple (S, A, p, r), where 
S is a finite set of states, A is a finite set of actions, p is the transition function that 
maps state s and action a at time t to the next state s′ and r is the reward function that 
assigns a reward after transiting from s to s′.

An optimal policy, π*, corresponds to finding the optimal state-value function 
(v*(s)  =  maxπ vπ(s)) or optimal action-value function (q*(s, a)  =  maxπ qπ(s, a)). 
Optimal policy will lead the agent to its goal with maximum return, for instance an 
agent reaching the terminal grid traveling through the shortest path in a Gridworld 
environment. Optimal policy is achieved by following a greedy scheme in every 
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step of the training process. In practice, v*(s) is computed by following the on- 
policy iterative temporal-difference (TD) one-step update rule as,

 
V s V s r V s V st t t t t� � � � � � � � � � � ��� ��� �� �1 1 ,  (5.5)

while q*(s) is calculated by one-step off-policy TD control rule also known as 
Q-learning [43] as,

 
Q s a Q s a r Q s a Q s at t t t t

a
t t t, , , ,� � � � � � � � � � � ��

�
�
�� �� �1 1max .  (5.6)

In on-policy scheme, action selection and value update are implemented from a 
common policy, while in off-policy, two separate polices are followed. For instance, 
in Q-learning action selection (behavior policy) is carried out by ε-greedy or ε-soft 
policies, whereas the action-value function is updated with the best action (target 
policy). ε-greedy or ε-soft policy is necessary to balance the exploration- exploitation 
trade-off; learning the optimal decision making policy can only be obtained through 
sufficient exploration of the unknown environment. In general, the policy selects a 
random action with probability ε and the best action with probability 1 − ε. As the 
training progresses, the probability ε is gradually decreased so that the agent mostly 
explores the environment in the initial phase and exploits the knowledge gained in 
the later phase. For an in-depth analysis and explicit examples of RL algorithms, the 
readers should refer to Ref. [42].

Dong et al. [16] implemented the Grover’s search algorithm in finding the best 
actions, i.e., maximum value-yielding actions. To apply Grover’s search algorithm, 
the actions are defined via quantum state. Quantum state’s probabilistic nature pro-
vides a natural solution to the agent’s exploration vs. exploitation trade-off without 
the need to define ϵ and any other related adjustable parameter. In general, Grover 
algorithm cannot amplify the probability amplitude of the best action (marked state) 
to exactly 1. Therefore, there is always a chance for a quantum measurement to 
yield a suboptimal (unmarked) action. The probability of yielding the best action is 
higher than that of suboptimal action. This is very similar to ε-greedy policy, except 
that all the parameters are fixed by the problem.

A training episode of the QRL algorithm can be summarized as follows: the 
agent starts from an initial state, and a superimposed action quantum state is pre-
pared where each eigenstate represents an action. A quantum measurement is car-
ried out on the action state, collapsing it into an action, which is then executed, the 
agent’s next state is observed, reward value is obtained, and the state value is updated 
using either Eq. (5.5) (or 5.6). The action quantum state’s probability amplitude is 
then updated via Grover iteration. The process is repeated starting from the quantum 
measurement until the goal state is reached. This training episode is repeated until 
convergence is reached. An application of the QRL is presented in Sect. 5.2.
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5.5  Application of Quantum Computing in Medical Physics

At the date of this publication, there have been relatively few applications of quan-
tum computing in medical physics. This is not surprising given that in many ways 
the field of quantum computing is still in its infancy.

5.5.1  Optimization and Planning

In optimization problems, the goal is to minimize a user-defined objective function 
by finding the optimal combination of parameters which the objective function 
depends on. A common example of such a problem in radiotherapy is treatment 
planning optimization, where the objective function is usually a sum of prescribed 
dose and dose volume constraints for the tumor and organs at risk, and the param-
eters to be optimized include beamlet weights, beam orientations, or MLC aperture 
shapes. For many real-world applications, finding the optimal solution is a non- 
trivial task because the solution space is non-convex—meaning there exist many 
potential solutions which are local minima in the objective function’s energy land-
scape and the optimization search algorithm gets trapped in these local minima 
before it can find the global minimum. Some optimization algorithms such as simu-
lated annealing are guaranteed to converge on the global minimum under certain 
conditions, but this often requires excessive or even infinite computation times for 
large problems. The development of algorithms which can find optimal (or close to 
optimal) solutions for challenging, non-convex optimization problems within a rea-
sonable amount of time is therefore an active area of research.

The earliest known application of quantum computing to medical physics was a 
study published in 2015 which investigated quantum annealing as a method for 
IMRT treatment plan optimization [44]. In this study, IMRT beamlet weights for 
two prostate cancer cases were optimized using quantum annealer hardware and 
compared against two optimization methods—Tabu search and simulated annealing 
implemented on a standard classical computer. Each algorithm was run for the same 
number of objective function evaluations, and performance was assessed by compu-
tational speed (defined as wall clock time), by the final objective function value, and 
by the overall quality of the treatment plans generated. For both cases, quantum 
annealing had a wall clock time that was more than twice as fast as simulated 
annealing and more than three times as fast as Tabu search. Simulated annealing 
was found to produce the highest quality plans for both cases, while the quantum 
annealing technique came in second and third, respectively.

One unique aspect of performing calculations on quantum hardware is that prob-
lems must be formulated such that inputs and measured outputs are binary. In the 
case of the above study, each beamlet weight value was represented as a 5-bit vector 
(wb ∈ {[00000], [10000], [01000],…, [11111]}), allowing for 25 = 32 levels of dis-
cretization. In total, each beamlet required 7 qubits for optimization, 5 to represent 
the numeric value and 2 for functional smoothing. It is important to note that when 
performing optimization with quantum hardware, the size of the solution search 
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space is limited by the total number of qubits that the hardware can support. The 
quantum annealing device used in the above study supported 512 qubits. The authors 
therefore defined the beamlet dimensions such that 70 beamlet weights were opti-
mized for each plan. For clinical applications however, a typical IMRT plan can 
have on the order of thousands to tens of thousands of beamlets—due to the use of 
more treatment beams (the study above used only 5) as well as smaller beamlet 
sizes. In addition, beamlet weights are usually represented as (nearly) continuous 
variables, meaning each beamlet weight has a much larger range of potential values 
it can take. The most advanced quantum annealers as of the year 2020 support up to 
2000 qubits, and thus technology is not yet at the point where it can support the full 
complexity of these types of optimization problems in radiation oncology. However, 
if quantum annealers are able to double the number of qubits they support every 2–4 
years (as has historically been the case), then this may cease to be an issue within 
the next decade.

In 2020, another study published by Pakela et  al. investigated the use of a 
quantum- inspired optimization algorithm, quantum tunnel annealing (QTA) for 
IMRT treatment plan optimization [19]. QTA models the solution search as a par-
ticle performing a random walk over a 1D potential energy landscape with the 
potential to tunnel through energy barriers. Like its classical neighbor, simulated 
annealing, in QTA, as the particle explores the solution space it will always move to 
lower energy solutions but will also sometimes accept higher-energy (i.e., worse) 
solutions. This ability to occasionally accept worse solutions helps to prevent the 
particle from becoming trapped in local minima. The key difference between QTA 
and simulated annealing is in the probability for accepting worse solutions.

In simulated annealing, the solution search is modeled after a many-body system 
in a heat bath undergoing thermal fluctuations, where the probability of accepting a 
worse solution over the current solution is proportional to the ratio of their respec-
tive Boltzmann factors:
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Here, ΔV is the change in potential energy (defined as the difference between the 
objective function values for the solution under consideration and the current 
accepted solution). T(t) represents the temperature of the system; T is initially set at 
a large value and is gradually decreased (annealed) over the course of the optimiza-
tion, gradually reducing the system’s likelihood of accepting worse solutions.

In QTA, the probability of accepting a worse solution is represented by the prob-
ability of a particle traversing a 1D potential energy landscape tunneling through a 
barrier of width, w. Using the Wentzel–Kramers–Brillouin (WKB) approximation 
this probability can be approximated as:
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where ΔV is again the change in potential energy,  t� �  is the annealing variable 
which represents the kinetic energy of the system (analogous to T in simulated 
annealing), and w(t) represents the width of the potential energy barrier. This barrier 
width is a heuristic, dynamic parameter and acts as an additional degree of freedom 
for the annealing schedule.

The performance of QTA was benchmarked against simulated annealing for 
IMRT beamlet weight optimization on two stereotactic body radiation therapy 
(SBRT) liver cases. Both algorithms were found to produce treatment plans of 
nearly identical quality as indicated by the cumulative dose volume histograms and 
3D dose distributions, though for the first case, QTA exhibited greater stability—
converging to the optimal plan 100% of the time while SA converged to the optimal 
plan 60% of the time. In addition, for the second, more challenging case, QTA 
converged up to 26.8% faster than SA. The results of this study indicated that the 
presence of the barrier width parameter could potentially serve as a valuable tool for 
improving both speed and robustness of treatment plan optimization.

5.5.2  Outcome Modeling/Decision Making

Cancer is a complex disease and its treatment such as radiotherapy (RT) is a com-
plex process that involves hundreds of variables. While keeping track of all the 
variables and their dynamics is an extremely difficult task, taking everything into 
consideration in planning a treatment is virtually impossible. Thus a clinical deci-
sion support system (CDSS) that helps physicians and patients in making an 
informed decision about the best course of treatment is highly desirable. Tseng et al. 
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Fig. 5.3 A pictorial representation of model-based radiotherapy reinforcement framework
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[45] developed a framework of such a CDSS for response-adapted RT in lung can-
cer based on deep RL. Response-adapted RT is a promising paradigm of personal-
ized and precision medicine that utilizes patient-specific information such as 
dosimetric, imaging (radiomics), clinical, and biological markers in recognizing 
patient’s dose response and making necessary dose adjustment mid treatment.

Biological datasets are inherently noisy, since all beings differ from each other in 
all levels: genetic, cellular, tissue etc. Applying quantum states and quantum com-
puting in processing such datasets provide advantage over classical information sys-
tem due to greater capacity of processing information. Accordingly, Niraula et al. 
[46] developed a CDSS for response-adapted RT in lung cancer based on three qubit 
QRL similar to Tseng et al.’s [45] work which was based on deep RL.

A model-based RL was implemented as shown in Fig. 5.3. Five patient-specific 
features were selected from a multi-objective Bayesian Network approach [47] in 
creating an artificial RT environment. The features were IP10 (cytokine), GLSZM- 
ZSV (radiomics-imaging), Tumor and Lung gEUD (radiation dose), and cxcr1-
Rs2234671 (genetics). A three-layered Deep Neural Network (DNN) was selected 
as the transition function to define state dynamics and two four-layered DNN as the 
outcome predictor. The DNNs were trained in a dataset from a cohort of 67 non-
small cell lung cancer patient. Local tumor control (LC) and radiation induced 
pneumonitis of grade 2 or higher (RP2) were selected as the outcome. A reward 
function was selected such that optimization would maximize local control while 
minimizing RP and the tabular q-learning approach was implemented.

Qiskit [24] quantum computing simulator was applied to define a three qubit 
quantum circuit and the necessary quantum gates. The eight quantum action states 
were assigned with dose values ranging from 1.75 to 3.5 Gy/frac. The average result 

from six trained QRL models is shown in Fig. 5.4 which compares the clinical and 
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QRL recommended dose. This recommendation is for week 4 to week 6 of RT treat-
ment plan; RT treatment lasts 6 weeks or 30 sessions. The RMSE deviation between 
the clinical and the recommended dose ranged from 0.75 to 0.84 Gy/frac which is 
comparable to 0.76 Gy/frac achieved by Tseng et al. via a more sophisticated Deep 
RL technique. The application of QRL in RT decision making is promising and 
need to be further explored.

5.6  Conclusion

In this chapter, we provided an overview of quantum computing and its rising role 
in machine learning, a new field known as quantum machine learning. Several 
implementations to traditional machine learning algorithms including PCA, BN, 
SVM, NN, RL, and deep learning are discussed. In addition, we showed example 
applications in medical physics treatment optimization and radiotherapy deci-
sion making.
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6Performance Evaluation

Nathalie Japkowicz

As in every experimental science, advances in fundamental or applied machine 
learning must be strictly validated. This applies to machine learning applied to the 
fields of Oncology, Medical Physics, and Radiology as well. Japkowicz and Shah 
[1] compiled a series of techniques pertaining to the three main tenets of machine 
learning evaluation, focusing specifically on classification, and discussed best prac-
tices for when to choose one technique over another. In particular, the book dis-
cussed the issues of choosing an appropriate performance metric for a task; the issue 
of error estimation or how to sample the available data judiciously; and the issues of 
applying a suitable statistical test for a given situation and interpreting the results of 
that test. The purpose of this chapter is to review these techniques in so far as they 
apply to advances in Oncology, Medical Physics, and Radiology and to discuss 
additional evaluation techniques particularly suited for these tasks.

This chapter is divided into two sections. The first section presents the standard 
evaluation methods used by the machine learning community as per Japkowicz and 
Shah [1] and discusses some additional methods used in the medical and image 
processing arenas. The second section reviews current practices in the application of 
deep learning systems in the areas of Oncology, Medical Physics, and Radiology 
and makes some recommendations, based on the machine learning community 
practices, on how to improve them.
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6.1  Standard Evaluation Methods for Machine 
Learning Systems

Japkowicz and Shah [1] describe the traditional evaluation framework used for clas-
sification systems. It consists of training a supervised machine learning algorithm 
on a labeled data set to learn a model. This model is then evaluated in order to assess 
how well it captures the relationship between the features representing the objects 
in need of classification and their labels. For example, an object can be a series of 
symptoms or absence thereof experienced by a patient and the label, or class, could 
be the physician’s diagnostic of that patient. Similarly, an object could be a medical 
image, such as an X-ray or MRI scan, and the class could indicate the presence or 
type of tumor within that image.

Given such situations, three important questions need to be answered prior to 
conducting the evaluation of the classifiers at hand:

• What performance metric should be used to derive a meaningful evaluation of 
the different models?

• What error estimation (or, more intuitively, sampling) method is likely to yield 
the most reliable results? In other words, how do we divide the available data into 
training and testing sets, taking particular precautions when the data is scarce.

• What statistical tests should be performed to help us trust our observed results?

The first question addresses the problem of fitting the performance metric to the 
problem at hand. Depending on the context or domain, certain aspects of the mod-
el’s performance are not that important while others are. For example while sensi-
tivity and specificity are frequently important performance measures in the medical 
domain, the AUC is a more abstract concept that may not matter as much to a medi-
cal practitioner. We illustrate this on a domain in which the classifier is tasked with 
predicting the recurrence of breast cancer. In such a domain, while sensitivity tells 
us the percentage of actual recurrence cases that the classifier predicted correctly 
and specificity tells us the percentage of non-recurrence cases that it predicted cor-
rectly, the AUC represents the ability of a classifier to rank a randomly chosen recur-
rence instance higher than a non-recurrence one. While the AUC is an important 
intrinsic measure of a classifier’s performance under different distributions, it is 
difficult to tie its meaning to a concrete quantity.

The second question has to do with the issue of how to divide the available data 
into training and testing sets, taking into consideration the fact that the relevant data 
available may be scarce, that training and testing on the same data set yields an 
unacceptable overly optimistic assessments of the models under consideration, and 
that it may be useful to repeat experiments on the same data set sampled in different 
ways in order to get as reliable an estimate of the model’s performance as possible.

The third question addresses the more familiar topic of statistical significance, 
which attempts to assess to what extent the results obtained with the chosen metric 
and sampling strategy depend on chance or true ability. In particular, it asks what 
statistical tests are best suited to the experimental framework used in the study.
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All in all these three questions are geared at finding a way to assess the useful-
ness of the machine learning systems designed to predict the classes of the data with 
unknown label. We now briefly review the most common methods used to perform 
this evaluation. For more detail, the reader is referred to Japkowicz and Shah [1, 2]. 
One important fact to keep in mind is that while there are “wrong” ways to perform 
classifier evaluation, there are no “right” ways. The choice of a metric, sampling 
technique or statistical test depends on what the researcher or practitioner is most 
interested in obtaining from the machine learning approach he or she uses.

6.1.1  Choosing an Appropriate Performance Measure

Many different performance measures have been proposed over the years and in 
various application domains. All these metrics take root in the concept of a confu-
sion matrix, illustrated in Fig. 6.1, for a two-class problem.

A confusion matrix creates two dichotomies which it expresses simultaneously. 
On the one hand, it considers the dichotomy derived from the classification of the 
data. The data is either positive (e.g., recurrence of breast cancer) or negative (e.g., 
no recurrence of breast cancer). On the other hand, it considers the dichotomy of 
truth versus prediction: the classification is either true or it is hypothesized. Laying 
the two dichotomies on top of each other, we obtained four quantities:

• TP: The number of true positives, i.e., the number of instances predicted to be 
positives that are truly positive.

• TN: The number of true negatives, i.e., the number of instances predicted to be 
negatives that are truly negative.

• FP: The number of false positives, i.e., the number of instances predicted to be 
positives that are in fact truly negative.

• FN: The number of false negatives, i.e., the number of instances predicted to be 
negatives that are in fact truly positive.

True class →
Hypothesized 
class              V

Yes

No FN

TP

Pos

TN

P=TP+FN N=FP+TN

FP

Neg

Fig. 6.1 A Confusion Matrix
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6.1.1.1  Common Metrics Used in all Machine Learning Applications
One of the simplest, most general and intuitive measure that can be obtained by 
combining the entries of a confusion matrix is the accuracy of a classifier or its 
opposite, the error rate. Accuracy is the ratio of all the instances that were correctly 
classified by the machine learning algorithm as either positive or negative over the 
total number of instances in the data set. The error rate is the opposite ratio, i.e., the 
ratio of all the instances that were incorrectly classified by the machine learning 
algorithm over the total number of instances in the data set. The formulae for both 
quantities are shown in Eqs. (6.1) and (6.2).

 
Accuracy � �� � �� �TP TN P N/  (6.1)

 
Error Rate � �� � �� �FP FN P N/  (6.2)

Unfortunately, while intuitive, these measures suffer from a dangerous trend: 
they are overly optimistic in the face of a problem that plagues nearly every domain 
to which machine learning is applied: the class imbalance problem [3]. The class 
imbalance problem is the term given to the phenomenon by which machine learning 
systems tend to perform poorly in the face of skewed distribution. This is common 
in many domains including the medical domain where occurrences of diseases such 
as cancer or other are minimal relative to the entire population. While classifiers 
have the tendency of labeling all instances with the majority class label, evaluation 
metrics such as Accuracy and Error Rate tend to reward this behavior rather than 
exposing it.

Furthermore, in the medical world, Accuracy and Error Rates are not the most 
interesting metrics. More interesting are Sensitivity and Specificity defined from the 
confusion matrix as per Eqs. (6.3) and (6.4).

 Sensitivity = TP P/  (6.3)

 Specificity = TN N/  (6.4)

Sensitivity can capture, for example, the proportion of people with cancer that 
were accurately labeled as having cancer while Specificity can point out the propor-
tion of people who do not have cancer that were properly labeled as not having the 
disease.

Some other metrics of interest are the notion of Precision, as well as two widely 
used combinations of some of the previously mentioned metrics, the F-measure (or 
F-score) and the AUC. Their definitions are shown in Eqs. (6.5), (6.6), and (6.7). 
Precision represents the proportion of true positives within the population labeled as 
positive by the classifier. For example, it asks what proportion of all the people who 
tested positive for, say Covid-19, actually have the disease. The F-measure is a bal-
anced combination of precision and recall (though it can be set to favor precision or 
recall if so desired) and the AUC, in case where the classifier threshold is set, lead-
ing to a classification rather than a score, can be expressed as a combination of 
sensitivity and specificity.
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Precision � �� �TP TP FP/  (6.5)

 
F Measure balanced Precision Recall Precision Recall� � � � � �� � ��2 / ��  (6.6)

 
AUC Classification Sensitivity Specificity� � � �� � / 2  (6.7)

Two other metrics commonly used when the results of the learning system are 
continuous rather than discrete are the root mean squared error (RMSE) and the 
mean absolute error (MAE). These two metrics are defined in Eqs. (6.8) and (6.9).

 

RMSE � �� �
�
�1
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(6.8)

 

MAE � �
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(6.9)

6.1.1.2  Metrics Used Specifically in Medical Machine 
Learning Applications

While Sensitivity and Specificity are useful in the medical domain, they assume that 
the data from one class is of more interest than the data from the other. In certain 
cases, metrics that consider both classes as equally important are more useful. Some 
of these metrics, which combine Sensitivity and Specificity and are pointed out in 
Sokolova et al. [4], include Youden’s Index, Likelihood, and Discriminant Power 
defined in Eqs. (6.10), (6.11), and (6.12).

 
Youden s Index Sensitivity Specificity’ – –� � �1  (6.10)

 
Likelihoods Sensitivity SpecificityL� � �� �/ 1  (6.11)

 
L� � �� �Specificity Sensitivity/ 1  

 

Discriminant Power
Sensitivity Sensitivity
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�� �� �
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�
��  

(6.12)

Youden’s Index evaluates a classifier’s ability to avoid failure. It weighs equally 
the algorithm’s performance on positive and negative examples. The positive and 
negative likelihoods treat sensitivity and specificity separately but equally. A higher 
positive likelihood and a lower negative likelihood signify a better performance on 
the positive and negative classes, respectively. The relation between the likelihood 
of two separate algorithms establishes which algorithm is preferable and in which 
situation [5]. The Discriminant Power evaluates how well an algorithm distinguishes 
between positive and negative examples.
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6.1.1.3  Common Metrics Used in Computer Imaging Applications
So far, all the metrics discussed were proposed or borrowed (from other fields) by 
the Machine Learning community. We will now turn our attention to other metrics 
of interest to Oncology, Medical Physics, and Radiology. Of interest for the impor-
tant task of image segmentation are the Jaccard Index and Dice Coefficient defined 
in Eqs. (6.13) and (6.14).

 
J A B A B AUB,� � � � /  (6.13)

 
D A B A B A B,� � � � � �2 /  (6.14)

The Jaccard Index measures the area of overlap between the predicted shape and 
the true shape divided by the area representing their union. The Dice Coefficient is 
very similar and measures the overlap between the predicted shape and the true 
shape, but multiplies that quantity by two before dividing it by the sum of the pre-
dicted shape and the true shape. Of course, in both cases, if A = B, the ideal case, 
then the result is 1.

Despite the importance of these two metrics for image segmentation, it is worth 
noting that other more specialized supervised and unsupervised evaluation metrics 
for image segmentation have been proposed and are surveyed in Zhang [6, 7] among 
other works.

We now turn to the important question of error estimation or data sampling.

6.1.2  Choosing an Appropriate Sampling Method

Ideally, when evaluating a classifier, we would have access to the entire population 
or a lot of representative data from it. Unfortunately, this is usually not the case, and 
the limited data available has to be re-used in clever ways in order to be able to 
estimate the error of our classifiers as reliably as possible. This is the subfield of 
machine learning evaluation that we call error estimation, but two probably more 
intuitive terms are sampling and/or re-sampling.

The main mistake to avoid with respect to error estimation is to train and test 
classifiers on the same data set. Since the purpose of inducing a classifier is to use it 
for predictive purposes, testing the classifier on the data it was trained on is not 
indicative of how well it will perform on data it has never seen before. The way to 
estimate how useful it will be in the future is to test the classifier on data it was not 
trained on. If data is plentiful, that is a relatively easy task: the full data set can be 
divided into two large sets, a training and a testing set. The classifier gets trained on 
the training set and tested on the testing set. In cases where the classifier has param-
eters that need to be tuned, then the data must be divided into three sets: a training, 
a validation and a testing set. The training set is used to train multiple instantiations 
of the learning algorithms (each instantiation represents a different combination of 
parameters) which get tested on the validation set. Once the best instantiation is 
found, it is tested on the testing set. It is important to remember that while the 
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training and validation sets can be used multiple times, the testing set should be 
used only once in order not to bias the results.

In case where the data is scarce, dividing it into three or even two sets is not pos-
sible. In such cases, a commonly used strategy is called k-fold cross-validation. It 
consists of dividing the data into k disjoint subsets and training and testing k classi-
fiers. Each classifier gets trained on k−1 subsets and tested on the subset it was not 
trained on. The tested subset is rotated so that eventually the k classifiers are col-
lectively tested on all the data. The procedure is illustrated in Fig. 6.2. Of course the 
k classifiers are different but they have a lot in common since none of them differs 
from any other by more than 2*N/k where N is the number of instances in the data 
set. The performance obtained by each classifier on its dedicated testing set (called 
a fold) is averaged over all k folds and represents the performance of the method on 
that data set. Reporting the standard deviation along with the mean of the k folds is 
good practice since it indicates the stability of the classifier. It is important to note 
that if the classifier is parametric, then at each fold, the training set needs to be 
divided into a training and a validation set and the parameters must be tuned without 
using the testing set for that fold.

If the data set is very small, then instead of dividing the data into k subsets, it is 
divided into N subsets, each containing a single instance (N, again, is the number of 
instances in the date set). The N-fold cross-validation process is run as above but 
with k = N. This variation is called Leave-One-Out or Jacknife. It is more time con-
suming than k-fold cross-validation with a small enough k (e.g., k = 10 or k = 5), but 
it has the tendency of creating more stable classifiers since the training set used at 
each fold differs at most by two instances (though some instability may come from 
the classifier itself and not only on the data it was trained on).

Another error estimation procedure called bootstrapping is sometimes used espe-
cially on data sets that are even too small for cross-validation or leave-one-out to 
yield a good estimate. The idea of bootstrapping is to sample at random with 
replacement from the whole data set D, a very large number of new sets Di (i = 1 to 
N, a large number, at least greater than 200) of the same size as D. The instances not 
selected by the random sampling procedure that created Di represent the testing data 
associated with Di. Є0i represents the error of the classifier at run i. Є0 represents the 

Fold 1:

Fold 2:

Fold k-1:

Fold k:

.....

: training data subset

: testing data subset

Fig. 6.2 k-Fold Cross-Validation
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average of all the Є0i ‘s. It is called the Є0 bootstrap. However, the Є0 bootstrap tends 
to be pessimistic because it is only trained on 63.2% of the data in each run. The Є632 
attempts to correct for this. Its formula is shown in Eq. (6.15).

 
C632 00 632 0 368� � � � � �. .C ferr  (6.15)

where err(f) is the optimistically biased error rate obtained on the training set.
More details about cross-validation, leave-one-out, and bootstrapping can be 

obtained in Japkowicz and Shah [1].
We now turn to the question of statistical testing of our results to assess their 

reliability.

6.1.3  Choosing an Appropriate Statistical Testing Strategy

The main question asked in this section is: can the evaluation results obtained using 
the metrics and error estimation methods previously discussed be attributed to real 
characteristics of the classifiers under scrutiny or are they observed by chance? This 
main question can be rephrased in the context of a single classifier and in the context 
of several ones:

• Is the result we obtained using the methods discussed in Sects. 1.1 and 1.2 a good 
estimate of the true performance of our classifier?

• When comparing several classifiers on one or several domains, are the results 
using the methods discussed in Sects. 1.1 and 1.2 truly indicative of the best 
classifier?

We suggest ways to answer these questions in each of Sect. 1.3.1 and 1.3.2. More 
details can be found in Mitchell [8] and Japkowicz and Shah [1].

6.1.3.1  In the Context of a Single Classifier
In order to estimate, say, the true error of a classifier (but it could be any other quan-
tity measured by one of the metrics discussed in Sect. 1.1) based on the error we 
observed on a testing set, we can construct a confidence interval.

This can be done if the n values being considered (either data samples them-
selves, if a testing set is used or averages over folds in a k-fold cross-validation regi-
men) were drawn independently of each other and are independent of the classifier 
and n is greater or equal to 30 (i.e., at least 30 data points need to be present in the 
testing set or 30 independent folds must have been run).

In such a case, a 95% confidence interval can be calculated around the error, e, 
(or any other metric) as per Eq. (6.16):

 
e

e e

n
�

�� �
1 96

1
.

 
(6.16)
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which means that the true error lies in the interval shown in Eq. (6.16) with approxi-
mately 95% probability.

6.1.3.2  In the Context of Several Classifiers
When considering the problem of choosing the best classifier for a task or for a 
series of tasks, given classifiers’ and their settings’ sensitivity to particular and usu-
ally unknown data characteristics, there is no reliable way to select a classification 
method, a-priori, without comparing its performance to that of other contenders. For 
example, even if a Generative Adversarial Network (GAN) has been reported to do 
best on, say, a chest X-ray data set, it is very possible that on another chest X-Ray 
data set and a particular task, a convolutional neural network will actually work bet-
ter. One cannot know until training both models with optimized settings for the data 
and comparing the results. Of course, previous studies on similar data sets are useful 
as they can help eliminate the classifiers that were shown not to perform well at all 
on that kind of data and, thus, focus on the best contenders. If, on the other hand, a 
type of classifier has been shown to be consistently better than others on a variety of 
related tasks, then it may be possible to assume that it is the best contender for the 
task. Even then, however, it is a good idea to verify experimentally that that result 
applies to the particular data set under investigation.

The purpose of statistical significance testing, in this case, is to help gather evi-
dence of the extent to which the comparative results returned by an evaluation met-
ric on different classifiers and possibly different data sets are representative of the 
general behavior of our classifiers. The principle used to establish such results is the 
well-known principle of hypothesis testing.

Hypothesis testing consists of stating a null hypothesis which usually is the 
opposite of what we wish to test (for example, classifiers A and B perform equiva-
lently). We then choose a suitable statistical test and statistic that will be used to 
reject the null hypothesis. We also choose a critical region for the statistic to lie in 
that is extreme enough for the null hypothesis to be rejected. We calculate the 
observed test statistic from the data and check whether it lies in the critical region. 
If so, one should reject the null hypothesis. If not, one fails to reject the null hypoth-
esis, but does not accept it either. Rejecting the null hypothesis is what gives us 
some degree of confidence in the belief that our observations did not occur merely 
by chance.

A hypothesis can be tested with a statistical test. However, there are several 
aspects to consider when choosing a statistical test. What kind of problem is being 
handled? Whether we have enough information about the underlying distributions 
of the classifiers’ results to apply a parametric test? Regarding the type of problem, 
we distinguish between:

 – The comparison of 2 algorithms on a single domain
 – The comparison of 2 algorithms on several domains
 – The comparison of multiple algorithms on multiple domains
 – The comparison of multiple algorithms on a single domain
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Regarding the second question, we often suggest the use of non-parametric tests 
since such tests make fewer assumption about the distribution of the data they are 
testing. On the other hand, these tests are less powerful than parametric ones and if 
they don’t achieve statistical significance, a parametric test may be warranted after 
verifying that all the assumptions of the test are verified.

Table 6.1 lists the recommended test in each of the situations considered:
The tests are described in Figs. 6.3, 6.4, 6.5, 6.6, and 6.7, below, and are reprinted 

from the tutorial on Performance Evaluation for Learning Algorithms [9].
We will not discuss each recommended test in more detail here, but a deeper 

discussion can be found in Japkowicz and Shah [1].
This concludes our review of standard evaluation methods for machine learning 

systems. The next section questions whether these methods are appropriate in the 
medical imaging field.

6.2  Standard Practice in Medical Imaging and Oncology

In this section, we will review some of the studies that have been conducted in the 
field of medical imaging and oncology, comment on the current general evaluation 
practice in the community and on what could be learned from the field of machine 
learning’s longer history of grappling with evaluation issues.

Table 6.1 Recommended Statistical Tests

Two classifiers, one 
domain

The sign test (non-parametric, very low power)
McNemar’s test (non-parametric)
The t-test (parametric)

Two classifiers, multiple 
domains

The sign test (non-parametric)
Wilcoxon’s signed-rank Test (non-parametric)

Multiple classifiers, 
multiple domains

ANOVA (parametric) followed by Tukey’s test, Nemenyi’s test, etc.
Friedman’s test (non-parametric) followed by Nemenyi’s test

Multiple classifiers, 
single domain

Special case of multiple classifiers multiple domains. Slightly 
modified ANOVA and Friedman’s Test versions apply.

with d = pm (f1)–pm(f2) and σd = 

  d is the difference of the means of our performance measures obtained when
   applying classifiers f1 and f 2.
  di is the difference between the performance measures of classifiers f1 and f 2 at trial
   i. n is the number of trials

Σ
n
i=1(di–d)2

n–1

d –  0
σd/√n

t =
–

–
–

–

Fig. 6.3 The t-test. pm stands for performance metric (e.g., accuracy, AUC, etc.), pm  represents 
the average value of the performance metric over the n trials
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6.2.1  Review of the Current Practice in Medical Imaging 
and Oncology

This discussion is based on Sahiner et al. [10] where the authors review the applica-
tion of deep learning strategies in medical imaging and radiation therapy. The three 
main types of problems they identify1 are:

1 An additional two tasks, Processing and reconstruction, and Imaging and treatment are also pre-
sented but are less relevant to the discussion in this chapter.

•  The number of instances misclassified by both classifiers (c00)
•  The number of instances misclassified by f1 but correctly classified by f2 (c01)
•  The number of instances misclassified by f 2 but correctly classified by f1 (c10)
•  The number of instances correctly classified by both classifiers (c11)

   The McNemar χ2 statistics is given by χ2
MC =

   If c01 + c10 ≥ 20, then χ2
MC is compared by to the χ2 statistic. If χ2

MC

   exceeds the χ2
1,1-α statistic, then we can reject the null hypothesis that

   assumes that f1 and f 2 perform equally with 1-α confidence.
   If c01 + c10 < 20, this test cannot be used, and the sign test should be used
   instead.

(c01 − c10−1)2

c01 + c10

   McNemar’s test is the non-parametric counterpart of the t-test. It relies
   on 4 values, observed on the testing set:

Fig. 6.4 McNemar’s test

•  We count the number of times that f1 outperforms f2, nf1
   and the number of times that f2 outperforms f1, nf2.
•  The null hypothesis stating that the two classifiers perform
   equally well holds if the number of wins follows a binomial
   distribution.
•  Practically speaking, a classifier should perform better on at 
   least wα datasets to be considered statistically significantly
   better at the α significance level, where wα is the critical
   value for the sign test at the α significant level.

Fig. 6.5 The Sign Test

•  For each domain, we calculate the difference in performance
   of the two classifiers.
•  We rank the absolute values of these differences and graft
   the signs in front of the ranks.
•  We calculate the sum of positive and negative ranks, 
   respectively (WS1and WS2)
•  TWilcoxon = min(WS1, WS2)
•  Compare to ctritical value Vα· If Vα ≥ TWilcoxon we reject the 
   null hypothesis stating that the two classifiers perform
   equally well at the α confidence level.

Fig. 6.6 Wilcoxon’s 
Signed Ranked Test
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• Image segmentation (organ or tumor segmentation)
• Detection (organ or lesion detection)
• Characterization (lesion, tissue, diagnosis, prognosis, staging)

The issue of evaluation is discussed in a section of the paper where, in particular, 
warnings about testing on the same data the classifier was trained on are given and 
include the more subtle issue of having to create a validation set in addition to a 
training set. The survey also suggests the use of cross-validation if the data set is too 
small for a division into training validation and testing sets to be viable. Leave-one- 
out is implicitly mentioned (See Tables 1–6 of Sahiner et al. [10] which report the 
experimental settings used in a large number of studies belonging to the different 
types of problems identified).

While metrics are not explicitly described, many are implicitly considered (See 
Tables 1–6 of Sahiner et al. [10]).

Absent from the review are mentions of statistical tests to validate the results 
obtained, although one measure of statistical reliability is implicitly mentioned in 
the form of standard deviation of the measured error (See Table  3 of Sahiner 
et al. [10]).

6.2.2  Areas where Improvements Could Be Made

The discussion and practical methodology used by the studies reported in Tables 
1–6 of Sahiner et al. [10] show good adherence to the main rules of evaluation.

On the metrics front, the authors of these studies displayed great sensitivity to 
some of the shortcomings of the common metrics and adopted more sophisticated 
ones. In particular, accuracy was most generally avoided, which is a good step to 
deal with its inadequacy in class imbalanced situations, a problem that is prevalent 
in medical settings.

•  All the algorithms are ranked on each domain separatelty.
   Ties are resolve by assigning the average rank of all the
   classifiers involved in the tie to these classifiers.
•  For each classifier, the sum of their ranks obtained on all
   the domains is computed and named R.j where j is the
   classifier considered.
•  The Friedman statistic is calculated as:

•  χF
2 = [                       × Σk

j = 1(R.j )2] 1− 3×n × (k −1)12
n × k × (k − 1)

With n representing the number of domains and k, the number of classifiers.

•  If χF
2 exceeds the χ2

k _1 statistics approximated
specifically for Friedman’s test, then we can reject the
null hypothesis that states that all classifiers perform
equally well.

Fig. 6.7 Friedman’s Test
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On the sampling (or error estimation) front, however, a disturbing trend was 
observed in some of the studies reported in the paper, due mostly to the small size 
of the data sets available. In particular, there were a few studies considering data 
sets of the order of 15–20 patients for training and 8–10 patients for testing. These 
are concerning. Even when the pool of testing patients reaches the 20s, the results 
remain questionable. This is the case, statistically speaking, given that reliable con-
fidence intervals can only start being established for 30 samples, due to the central 
limit theorem. Taken from a strict machine learning point of view, the problem is 
exacerbated in the training set by the fact that the data is of such high dimensionality 
to begin with, that training on a small number of instances creates greater chances 
of overfitting. In cases where the data sets are that limited, it would be greatly 
advised not to divide the data into training and testing sets, but instead, to use leave- 
one- out and bootstrapping. If such an evaluation regimen is too costly, the authors 
should at least consider k-fold cross-validation with an appropriate value for k. 
Asking researchers to adhere to these higher standards of evaluation would help 
validate the use of machine learning and deep learning methods in Oncology, 
Medical Physics, and Radiology.

On the statistical testing front, while Table 3 of Sahiner et al. [10], which reports 
organ and anatomical structure detection results using regression measures, lists 
both the mean error and its standard deviation, no record is made of any measure of 
statistical validity in any of the other studies. A look through a handful of papers 
indicates that indeed, such issues were often not considered. It is important to note 
that calculating confidence intervals or verifying the statistical significance of com-
parisons as discussed in Sect. 1.3 is very useful in assessing the true utility of a 
classifier. Along with careful sampling, including such considerations would help 
the field move forward faster as it could help it focus on the methods that truly work 
best and could be the basis for important practical advances in the field.

6.2.3  Lessons from the Past

The advent of deep learning has precipitated the use of machine learning in medical 
imaging, though it remains a relatively recent phenomenon. Evaluation may not 
seem like a priority at this point since the focus is on tuning existing architectures 
and coming up or trying new methods.

This is natural and happens in every field. For example, something very similar 
happened at the very beginning of the field of machine learning. In 1980, some 
papers were published with results presented as statements such as “The program 
works well” and “The rules developed are similar to those invented by humans play-
ing the same game (15 complete games have been analyzed)” [11]. Despite such 
vague evidence, such papers were very important for the development of machine 
learning methods. Other articles, on the other hand, already used the notions of 
confusion matrices and training and testing sets [12]. However, they did not dig 
further into evaluation standards. By the early 1990s, Weiss and Kulikowski [13] 
popularized the use of cross-validation and hypothesis testing. In the late 1990s, 
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Provost et al. [14] started challenging accuracy as a reliable metric, while by the 
middle of the 2000s, Demsar decried the overuse of the t-test and introduced the 
machine learning community to the more appropriate statistical tests mentioned 
earlier [15]. As a result, despite its long history, machine learning took a long time 
to come to the fore.

To accelerate progress in the fields of Oncology, Medical Physics, and Radiology, 
it may be useful to borrow some of the advances that took place in machine learning 
evaluation and quickly adapt them to the needs of the community.
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7Software Tools for Machine and Deep 
Learning

Dipesh Niraula and Issam El Naqa

7.1  Introduction

Machine learning took a huge leap with the success of deep learning in computer 
vision and natural language processing. Deep learning enables a computer to 
directly gain accurate high-level information from raw images and video mimicking 
human visual system, and audio mimicking human auditory system. Such ability is 
essential for full automation of various medical and non-medical systems. Thus, the 
application of machine and deep learning algorithms have drastically increased in a 
wide range of fields such as medical research, autonomous driving, aerospace and 
defense, industrial automation, electronics, business sector, etc. In turn, machine 
learning computer software and tools have been actively researched and rapidly 
developed. This chapter introduces several deep learning platforms with brief 
description of some of the most popular ones as depicted in Fig. 7.1.

Because Python as an interpreted, high-level, general-purpose language is easy 
to understand and use, most popular open-source machine and deep learning plat-
forms are recently developed in the Python language. In fact, due to explosion of 
Python based deep learning community, popularity of the Python language has sur-
passed that of C++ and is only behind java and C [1]. So this chapter will primarily 
focus on Python-based libraries. Cloud computing is an emerging technology that 
simplifies computational process and resource access, where a user can access data- 
storage and computing power through internet without directly maintaining expen-
sive hardware resources. This paradigm shift from on-premise towards cloud 
computing may soon become the norm and thus we have included a discussion on 
some of the most common cloud computing platforms that are equipped with 
machine learning tools.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83047-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-83047-2_7#DOI
mailto:Dipesh.Niraula@moffitt.org
mailto:Issam.ElNaqa@moffitt.org
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7.2  Python-Based Machine Learning Library

This section begins with introduction to tools required to download Python pack-
ages, then presents several popular Python based machine learning and deep learn-
ing libraries.

7.2.1  Pip and Conda

Pip and Conda are two software tools for installing python packages. Pip is the 
Python Packaging Authority’s recommended tool that installs packages from Python 
Package Index, PyPI [2]. Conda is a cross platform package and environment man-
ager that installs packages from the Anaconda Repository or the Anaconda Cloud 
(www.anaconda.com). The main difference between pip and conda is that pip 
installs python packages, whereas conda can install packages that might contain 
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software written in other languages. Thus python interpreter must be pre-installed 
for pip, whereas conda can install python packages as well as python interpreter. 
Other difference is that conda can create isolated virtual environment that can con-
tain different version of packages, whereas secondary tools like virtualenv and venv 
must be utilized for pip. In practice, both of these tools are interchangeably used to 
get the best of both.

7.2.2  NumPy and SciPy

Although not directly related to machine or deep learning, NumPy [3, 4] and SciPy  
[5] packages are the most useful scientific computing packages in the Python lan-
guage. NumPy provides ability to process multidimensional array (Tensors) and 
SciPy, built over NumPy, provides high-level mathematical functions and algo-
rithms such as optimization, integration among many others and also can handle 
sparse matrices and k-dimensional trees. This makes it entirely possible to construct 
deep learning tools purely out of NumPy and SciPy; around 47% of all machine 
learning projects on GitHub used SciPy [5]. Additionally, many popular deep learn-
ing libraries are either built on NumPy or attempts to mimic NumPy.

7.2.3  Dedicated Machine Learning Libraries

Machine Learning library contains tool such as support vector machines (SVM), 
K-nearest-neighbor classifier, hierarchical clustering, and Principal Component 
Analysis (PCA) among many others for solving regression, classification, cluster-
ing, dimensionality reduction, and other problems. Following are some common 
machine learning libraries.

7.2.3.1  Scikit-Learn
Scikit-learn [6, 7] is an open source robust machine learning library built on NumPy, 
SciPy, and matplotlib, and is the most popular standalone machine learning library. 
It was originally created by David Cournapeau as a Google summer project in 2007. 
It has a range of supervised and unsupervised learning algorithms and rich resources 
for data preprocessing, model selection and evaluation, dimensionality reduction, 
and many other tools well documented in its 3000 page user-guide [8]. While the 
package is written in Python, it incorporates C++ libraries such as LibSVM and 
LibLinear. In practice, its data preprocessing tools are often used in conjunction 
with other deep learning libraries.

7.2.3.2  Shogun
Shogun [9] is an open-source machine learning library initiated by Soeren 
Sonnenburg and Gunnar Raetsch in 1999 with focus on bio-informatics. It is one of 
the oldest library that is written in C++ with interfaces to Python, Octave, Java/
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scala, Ruby, R, Lua, and C#. It offers binding to several other libraries such as 
LibSVM, LibLinear, SVMLight, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, 
GPML, and others. The cloud version can also be remotely accessed via Jupyter 
notebook. Scikit and shogun are considered to be the two comprehensive machine 
learning libraries currently.

7.2.3.3  mlpy
Machine Learning Python (mlpy) [10] is an open-source machine learning library 
developed by Davide Albanese dedicated to computational biology in general and 
functional genomic modeling in particular. It is built on top of NumPy, SciPy, and 
GNU Scientific Library and uses CPython to communicate with GNU, which is 
written in C. The last stable version was released in 2012.

7.2.3.4  PyMVPA
Multivariate Pattern Analysis in Python (PyMVPA) [11] is an open-source machine 
learning library developed as a neuroimaging software for functional magnetic reso-
nance imaging data analysis in 2009. The library is built on NumPy and SciPy. 
Along with basic ML algorithms, it includes statistical tools for analysis from R via 
Python wrappers RPy. It also utilizes ShoGun.

7.2.3.5  MDP
Modular toolkit for Data Processing (MDP) [12] is an open-source machine learn-
ing library developed as a part of theoretical research in neural science in 2009. It is 
built on NumPy and SciPy. It includes supervised and unsupervised learning algo-
rithms and other data processing units called nodes that can be combined into a 
sequence, a feed-forward network architecture, which is the building block of deep 
learning model.

7.2.3.6  PyBrain
Python-Based Reinforcement Learning, Artificial Intelligence and Neural Network 
Library (PyBrain) [13] is an open-source python-based machine learning toolbox 
that includes early versions of neural networks. It is built on SciPy that provides 
tools for supervised, unsupervised, and reinforcement learning. Beside machine 
learning algorithms such as SVM, Gaussian processes, etc., it contains deep learn-
ing elements such as Long Short Term Memory (LSTM) Recurrent Neural Network 
(RNN) and deep belief networks. Pybrain is a hybrid library that forms a bridge 
between machine and deep learning libraries.

7.2.4  Deep Learning

Deep learning libraries contain tools pertaining to neural networks such as generic 
neural networks, convolution neural networks (CNN), RNN, activation functions, 
optimizers, weight and bias initializers and normalizers, etc. All of the libraries 
are efficient at matrix and tensor operations and many of them are designed to 
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utilize single GPU and some to utilize multiple GPUs for parallel distributed 
training. Several variants of stochastic gradient descent (SGD) algorithms are also 
included.

7.2.4.1  Theano
Theano [14] is an open-source deep learning framework developed by the Montreal 
Institute for Learning Algorithms (MILA) group starting from 2008. Theano effi-
ciently compiles multi-dimensional arrays in a highly optimized fashion for both 
CPUs and GPUs using CUDA (Compute Unified Device Architecture), the parallel 
computing platform developed by Nvidia. Additionally, theano’s API uses and 
mimics NumPy, and many deep learning frameworks have been built on top of it. 
Theano implements define-and-run or static-graph approach, i.e., define the fixed 
connection between various mathematical operations and then run the training. 
Static-graph approach is optimal for static neural networks architectures 
such as CNN.

7.2.4.2  Chainer
Chainer [15] is an open-source deep learning framework developed by Preferred 
Networks, a startup based in Japan, in 2015. Chainer implements define-by-run or 
dynamic-graph approach, i.e., the connection in the network is determined during 
the training. Dynamic-graph approach is better for variable-length data such as deep 
reinforcement learning and LSTM RNN compared to static-graph used in CNN. It 
utilizes CuPy, a matrix library accelerated with CUDA, for enhancing its training 
speed. CuPy is very similar to and highly compatible with NumPy. Chainer supports 
GPU (CUDA) and distributed parallel training. For computer vision task, an add-on 
package ChainerCV is also available.

7.2.4.3  TensorFlow
Tensorflow [16] is an open-source ML library built by the Google Brain team, 
focusing especially in deep learning. It is written in C++ core language with python 
as a binding language. It implements static-graph approach by default and switches 
to dynamic-graph in eager mode (Eager mode default since TensorFlow 2.0). 
Tensorflow also provides a visualization tool called Tensorboard that traces and 
illustrates the deep learning process. Keras is a high-level API now integrated with 
tensorflow. It has condensed syntax, as shown in Example 1, that makes it suitable 
for production purposes.

7.2.4.4  PyTorch
PyTorch [17] is an open-source ML library built preliminary by Facebook AI 
Research lab based on Torch library originally written in Lua, a simple C API. It 
implements dynamic-graph approach. It supports GPU (CUDA) and distributed 
parallel training. In practice, syntax-wise, distributed training in PyTorch is easier to 
set up than TensorFlow. Example 2 presents a sample PyTorch code that uses GPU 
when one in available.
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Example 1: Classification in Tensorflow.Keras
## TensorFlow and tf.keras libraries
import tensorflow as tf

##load data (x) with binary label (y)
(x_train, y_train),(x_test, y_test) = load_data()

##Build the model as dense: y=W.x+b
# Set up the layers
model = tf.keras.models.Sequential([

tf.keras.layers.Dense(64, activation=‘elu’),
tf.keras.layers.Dense(64, activation=‘elu’),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(1, activation=‘sigmoid’)

])
#Compile the model  
model.compile(optimizer=‘adam’,loss=‘binary_crossentropy’,
              metrics=[‘accuracy’])
# Train the model
model.fit(x_train, y_train, epochs=100)
# Evaluate the model
model.evaluate(x_test, y_test)

7.2.4.5  Caffe
Caffe [18] is an open-source deep learning framework developed by Berkeley AI 
Research. Caffe stands for convolutional architecture for fast feature embedding. It 
is written in C++ core language and supports Python and MATLAB as binding lan-
guages. It implements a static-graph approach.

7.2.4.6  MXNet
MXNet, pronounced as mix-net, is an open-source deep learning software frame-
work developed by Apache Software foundation [19] in 2015. MXNet implements 
mixture of static- and dynamic-graph approach, to obtain optimal performance. It is 
written in C++ core language and supports Python, R, Julia, and Go as binding lan-
guage. It supports multiple GPU and distributed parallel training.

7.2.5  Examples

Two examples of classification model in Tensorflow and PyTorch are presented in 
this section for the interested reader to highlight some of the main differences 
between these two popular platforms and provide sample code that can be custom-
ized for other radiological applications from model building to evaluations as pre-
sented in other chapters of this book.
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Example 2: Classification in PyTorch
## Pytorch libraries and helpers
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import NumPy as np

##Selects GPU if available
device = torch.device(“cuda:0"

if torch.cuda.is_available() else “cpu") 
class Model(nn.Module):

def_init_(self,input_dim):
super(Model_LCRP2, self)._init_()

##Build the model as dense: y=W.x+b 
# Set up the layers

self.linear1=nn.Linear(input_dim, 64)
self.linear2=nn.Linear(64, 64)
self.dropout3=nn.Dropout(p=0.2)
self.linear4=nn.Linear(64,1)

def forward(self,x):
x=F.elu(self.linear1(x))
x=F.elu(self.linear2(x))
x=self.dropout3(x)
return F.sigmoid(self.linear4(x))

# Define tranining and testing modules
def test(model,x,y):

model.eval()
test_acc = 0.0
for x,y in zip(x,y):

outputs = model(x)
prediction=outputs.data
test_acc += torch.sum(prediction.round()

                               == y.data.round())
#Compute the average acc all test samples
test_acc = test_acc / len(x)
return test_acc

def train(model,optimizer,num_epochs,model_name,
                    x_train,y_train,x_test,y_test):

Losses=np.zeros(num_epochs)
TestAccuracy=np.zeros(num_epochs)
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TrainAccuracy=np.zeros(num_epochs)
for epoch in range(num_epochs):

model.train()
train_acc=0.0
train_loss=0.0
for x , y in zip(x_train,y_train):
#clear all accumulated gradients
optimizer.zero_grad()
outputs = model(x)
loss = loss_fn(outputs,y)
#Backpropagate the loss
loss.backward()
#Adjust parameters according to the
#computed gradients
optimizer.step()
#for the performance metrics
train_loss += loss.item()
prediction=outputs.data
train_acc += torch.sum(prediction.round() ==

y.data.round())
#compute averages over all training samples
train_acc = train_acc / len(x_train)
train_loss = train_loss / len(x_train)
#evaluate test set
test_acc = test(model,x_test,y_test)
Losses[epoch]=train_loss
TestAccuracy[epoch]=test_acc
TrainAccuracy[epoch]=train_acc
#Print the metrics
print(“Epoch {}, Train Accuracy: {:.2f} ,TrainLoss:
{:.2f},Test Accuracy: {:.2f}".format(epoch,
train_acc, train_loss,test_acc))

#outputs metrics
return Losses, TestAccuracy, TrainAccuracy

(x_train, y_train),(x_test, y_test) = load_data()
model = Model(input_dim=10).to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-4)
loss_fn=nn.BCELoss()
epoch=100
if_name_== “_main_":

Losses, TestAccuracy, TrainAccuracy=train(model,optimizer,
epoch,x_train,y_train,x_test,y_test)
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7.2.6  Benchmark

This section provides some comparison performances of the various machine and 
deep learning libraries mentioned above for the reader benefit and the trade-offs 
employed when using them. The metrics in this section are accumulated from 
research papers cited in the respective table heading.

Table 7.1 compares computation speed of different tasks for all six machine 
learning library on Madelon data set [20].

Tables 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7 compares performance of different deep 
learning library. The benchmarks for Tables 7.2, 7.3, 7.4, and 7.5, were run on a 
NVIDIA Digits DevBox, with 4 Titan X GPUs, and a Core i7-5930K 
CPU.  Additionally, cuda 7.5.17 with cuDNN v4 and data type float 32 is used. 

Table 7.1 Computation time in seconds [6]

Scikit-
Learn mlpy PyBrain PyMVPA MDP Shogun

Support vector 
classification

5.2 9.47 17.5 11.52 40.48 5.63

Lasso (LARS) 1.17 105.3 – 37.35 – –
Elastic Net
0.52 73.7 – 1.44 – –
k-nearest neighbors 0.57 1.41 – 0.56 0.58 1.36
PCA(9 components) 0.18 – – 8.93 0.47 0.33
k-means(9 clusters) 1.34 0.79 >1 h – 35.75 0.68

Computation time for Madelon dataset [20]

Table 7.2 CNN: Forward|Backward computation time per minibatch (ms) [14]

AlexNet OverFeat VGG GoogLeNet
Theano 32|99 94|288 178|600 172|546
Theano-fast compile 44|118 111|319 263|758 250|680
Torch 27|80 90|269 164|525 132|470
Tensorflow 27|80 88|277 155|538 128|443

Processing time for various convolutional neural networks (CNN) on Imagenet dataset [21]. The 
specification of the CNN are: One-column variant of AlexNet [22] with batch size of 128, fast 
variant of Overfeat [23] with batch size of 128, model A VGG (oxfordnet) [24] with a batch size 
of 64, and GoogLeNet V1 [25] with a batch size of 128

Table 7.3 RNN: 1000 words/s [14]

Small Medium Large
Theano 14 12 10
Theano-fast compile 11 10 8
Torch 12 8 6
Tensorflow 17 11 8

Processing speed for Long Short Term Memory (LSTM) models on the Penn Treebank dataset 
[26]. Here, small model corresponds to single layer, 200 hidden units, sequence length: 20, medium 
model corresponds to single layer, 600 hidden units, sequence length: 40, and large model corre-
sponds to two layers, 650 hidden units each, sequence length: 50. Batch size of 20 was used
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Benchmark for Table 7.6 were run on six-core Intel Core i7-5930K CPU at 3.5 GHz, 
and an NVIDIA Titan X GPU. Benchmark for Table 7.7 was run on 2 Intel Xeon 
E5-2698 v4 at 2.20 GHz with 20 cores per sockets and 1 Nvidia Quadro GP100.

7.3  Weka

Weka [27] is a conventional machine learning tool that has a graphical user interface 
(GUI) and enables one to apply machine learning without programming. Its devel-
opment initiated in 1997 by developers at the University of Waikato and is an open 
source and can be freely downloaded. It is written in Java and is compatible with 

Table 7.4 Caption generating from video, Forward|Backward computation time/minibatch 
(ms) [14]

Batch Size 32 64 128
Theano 72|298 102|520 182|923
Tensorflow 100|323 135|520 232|850

Processing time for generating word sequences from video representations. Input video frame was 
preprocessed by a GoogLeNet that was pretrained for classification with ImageNet

Table 7.5 Theano data parallelism with LSTM, sync every batch|sync every 100 batch: 
1000 words/s [14]

Small Medium Large
1 GPU 14|14 12|12 10|10
2 GPU 23|27 20|24 15|19
4 GPU 45|55 39|47 31|38

Processing speed with multiple GPUs with Platoon on LSTM models, synchronizing after each 
batch and every 100 batch. Small, medium, and large models are same as Table 7.3

Table 7.6 Single-machine benchmarks: training step time (ms) [16]

AlexNet OverFeat OxfordNet GoogLeNet
Caffe 324 823 1068 1935
Neon 87 211 320 270
Torch 81 268 529 470
Tensorflow 81 279 540 445

Training step time using one GPU for 32-bits floats

Table 7.7 Throughput: sample per second [17]

AlexNet OverFeat OxfordNet GoogLeNet
Chainer 778 ± 15 N/A 219 ± 1 N/A
CNTK 845 ± 8 84 ± 3 210 ± 1 N/A
MXNet 1554 ± 22 113 ± 1 218 ± 2 444 ± 2
PaddlePaddle 933 ± 123 112 ± 2 192 ± 4 557 ± 24
TensorFlow 1422 ± 27 66 ± 2 200 ± 1 216 ± 15
PyTorch 1547 ± 316 119 ± 1 212 ± 2 463 ± 17

Training speed using 32bit float; throughput is measured in images per second
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most modern computing platforms. It gives access to other machine and deep learn-
ing toolboxes such as scikit-learn, R, and Deeplearning4j. Additionally, 
WekaDeeplearning4j is a deep learning package for Weka that adds deep learning 
capability to the Weka’s GUI.

7.4  R

R supports machine learning such as linear discriminant analysis, classification and 
regression trees, k-nearest neighbors, SVM with a linear kernel, Random Forest, 
etc. For deep learning, keras and tensorflow has launched an R version that gives the 
statistically equipped R with state-of-the-art deep learning capabilities. Alternatively, 
python function and tools can be used in R by wrapping them with R wrapper func-
tion using the reticulate library.

7.5  Matlab

Matlab has excellent deep learning tool box (Fig. 7.2) that contains comprehen-
sive sets of deep learning tools and models. Matlab supports single or multiple 
GPUs (CUDA), and can exchange models with Tensorflow and PyTorch via 
ONNX format and also import models from TensorFlow-keras and Caffe. The 
toolbox supports transfer learning with DarkNet-53, ResNet-50, NASNet, 
SqueezeNet, and many other pretrained model. Although matlab is not an open 
source, in addition to deep learning tool box, it contains computational tools 
from virtually every engineering field to create interdisciplinary deep learn-
ing models.

Fig. 7.2 Screenshot of Matlab deep learning tool box
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7.6  Cloud-Based Platforms

With advancement of cloud and serverless systems, the computing paradigm is 
shifting towards web browser based computing. The main attraction of cloud 
computing is not having to worry about backup, storage, installing and updating 
software, and maintaining the server in exchange for a usage fee. However, it 
remains a trade-off with on-premise cluster resources for deep learning such as 
high performance computing (HPC) servers, where issues related to security 
and privacy are controlled by the local IT team versus the maintenance of such 
resources.

There are several sources that provides online platform services for machine and 
deep learning. A few popular applications are mentioned in this section. In practice, 
cloud services are very convenient in places with fast internet connections.

7.6.1  AWS Deep Learning AMIs and SageMaker

The Amazon Web Service (AWS) Deep Learning Amazon Machine Images (DL 
AMI) provides infrastructure and tool for deep learning in the cloud. It can be 
accessed from https://aws.amazon.com/machine- learning/amis/. Users can 
access multiple CPUs and GPUs for training larger models. The service is pre-
installed with popular deep learning frameworks and interfaces such as 
TensorFlow, Keras, PyTorch, Theano, and others. For computing acceleration it 
includes latest NVIDIA GPU-acceleration through pre-configured CUDA and 
cuDNN drivers, as well as the Intel Math Kernel Library, and has pre-installed 
Anaconda Platform.

Amazon also offers SageMaker as a separate platform from DL AMI, which can be 
accessed from https://aws.amazon.com/sagemaker/. SageMaker is a development plat-
form suitable for developing application, whereas DL AMI is suitable for research and 
development. Similar to DL AMI, it also supports frameworks like TensorFlow, PyTorch, 
Apache MXNET, Chainer, Keras, Scikit-learn, and others. SageMaker comes in three 
different types: SageMaker, SageMaker Studio (Fig. 7.3), and SageMaker Autopilot. 
Studio is a fully integrated development environment, whereas Autopilot has automated 
machine learning development capability for industrial purpose (Fig. 7.3).

7.6.2  Google Colab

Google Colab (Fig. 7.4) is a jupyter notebook environment that provides free deep 
learning computation platform running in the cloud. It can be accessed from https://
colab.research.google.com/notebooks/intro.ipynb. It consists of pre-installed deep 
learning packages such as Keras, Tensorflow, PyTorch and other related libraries. To 
add new libraries one can simply pip install. It has open access platform where users 
can run deep learning models for free. For larger development project, users have 
access to powerful GPUs and even TPUs for a fee as an on-demand service.
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7.6.3  Azure Machine Learning Studio

Azure Machine Learning Studio (Fig. 7.5) is a commercial machine learning soft-
ware developed by Microsoft as a part of its cloud service Azure. It can be accessed 
from https://azure.microsoft.com/en- us/services/machine- learning/. It has an 

Fig. 7.3 Screenshot of AWS SageMaker Studio

Fig. 7.4 Screenshot of Google Colab
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interactive GUI where one can drag-and-drop tools to create and train a deep 
learning model, desirable for business solutions. It supports open-source tools and 
frameworks like PyTorch, TensorFlow, and scikit-learn. Development tools 
including popular IDEs, Jupyter notebooks, and CLIs or languages such as Python 
and R can be chosen.

7.6.4  IBM Watson Machine Learning Studio

IBM Watson Machine Learning Studio (Fig. 7.6) is a commercial machine learning 
platform developed by IBM that operates via the IBM cloud. It can be accessed 
from https://www.ibm.com/cloud/machine-learning. Similar to Azure ML studio, it 
has interactive GUI. It is built on open-source platform based on Kubernetes and 
Docker software packaging components. It presents graphical view of the model 
and also provides notebooks for interactive programming environment. It also 
includes distributed training feature and supports GPU, it helps in optimizing hyper-
parameters, and deploying trained models and python functions. It supports machine 
learning frameworks such as scikit-learn, XGBoost, TensorFlow, Keras, Caffe, 
PyTorch, IBM SPSS Modeler, and many others.

Fig. 7.5 Screenshot of Azure Machine Learning Studio
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7.7  Conclusions

Success of deep neural networks has diverted AI research community’s focus 
towards advancing deep learning methods. Consequently, the development of many 
conventional machine learning libraries has been limited in favor of rapid develop-
ment of deep learning platforms. Currently, there exits many deep learning plat-
forms, out of which we only presented a few that constitute the most popular ones 
and likely to pass the test of time. We also presented sample code for using the most 
common ones: TensorFlow and PyTorch, which can help the reader jump start 
building their own applications using these libraries whether on-premise or in 
the cloud.
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8.1  Introduction

Technical advancements in the fields of physics, radiobiology, and engineering (and 
indirectly chemistry) are the main drivers for better, and thus more specific, treat-
ment opportunities in radiation oncology. These advancements largely influence 
treatment methods, especially in regard to treatment planning (IGRT, IMRT, VMAT) 
and radiation techniques used.

In the current era of Evidence based Medicine (EBM), all of these advancements 
need to be validated to be sure whether a specific treatment (plan) is better than the 
current standard (e.g. in regard to possible patient outcome). However, we also 
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observe that new treatment options do not necessarily improve the outcome for an 
entire population but might only work for specific groups of patients. The standard-
ized treatment (according to the current guidelines) might be too intense for specific 
groups of patients (resulting into higher toxicities and/or other radiation-induced 
complications) or could result in under-treatment of patients. At this point, it 
becomes interesting to apply machine learning to retrospectively identify prognos-
tic factors (e.g. risk factors) and to develop predictive models to classify patients in 
distinct groups [1].

These groups can then be used to alter treatment options, e.g. to intensify or 
temper treatment.The more subgroups we can identify, the better we can optimize 
treatment for individual patients, leading towards the next era, called Personalized 
Medicine (PM).

This also imposes challenges on patient subgroup discovery and development 
of prognostic models as done for many years. Only several large institutions (in 
terms of patient turnover per year) can perform fine-grained subgroup analysis, as 
we need a fair number of patients with and without a specific outcome to test 
hypotheses regarding new treatment options for specific subgroups. Only with 
these large numbers of patients can we translate results of personalized medicine 
[2] into clinical practice by means of Clinical Decision Support Systems (CDSS) 
. In recent years, as newer technologies have evolved around the healthcare eco-
system, more and more data have been generated. Advanced analytics could 
empower the data collected from numerous sources, both from healthcare institu-
tions, or generated by individuals themselves via apps and devices, and lead to 
innovations in treatment and diagnosis of diseases; improve the care given to the 
patient; and empower citizens to participate in the decision-making process 
regarding their own health and well-being. Sharing health data across institutions 
and individuals will tremendously benefit individual patients, health research 
communities, and the whole society. However, the sensitive nature of the health 
data prohibits healthcare organizations from sharing the data. Ethical, legal, and 
societal barriers to health data sharing are more impactful than the technical bar-
riers. However, specifically designing infrastructures that cater to the ethical, 
legal, and societal barriers, a more sustainable radiotherapy data ecosystem can be 
achieved. The Personal Health Train (PHT) is a novel approach, aiming to estab-
lish a distributed data analytics infrastructure enabling the (re)use of distributed 
healthcare data, while data owners stay in control of their own data. The main 
principle of the PHT is that data remain in their original location, and analytical 
tasks visit data sources and execute the tasks. The PHT provides a distributed, 
flexible approach to use data in a network of participants, incorporating the FAIR 
principles. It facilitates the responsible use of sensitive and/or personal data by 
adopting international principles and regulations [3]. Therefore, we need to col-
laborate in radiation oncology research and share data to perform machine learn-
ing on larger, distributed datasets.

In this chapter, we will explain the current possibilities of machine learning in a 
distributed setting. We will start with the prerequisites and infrastructure 
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fundamentally needed for distributed machine learning. Afterwards, we will 
describe the concept of centralized and distributed machine learning, including the 
benefits and challenges. Finally, we will describe several applications/initiatives 
related to distributed machine learning and conclude with a summary of this 
chapter.

Note: In this chapter, the terms multicentre learning, distributed learning, and 
federated learning are used interchangeably. However, for all of the mentions of 
these terms, the meaning and intentions remain as federated machine learning from 
distributed datasets.

8.1.1  Data Landscape

8.1.1.1  Structured Data and Unstructured Data
Radiotherapy data can be both structured and unstructured. Structured data refers to 
the clinical information of a patient organized in the form of “key-value” pairs and 
represented as csv data, relational databases, or other healthcare standards. 
Radiology images, digitized speeches, free texts (clinical notes), scans, etc. are 
unstructured information. In this chapter, we will predominantly talk keeping in 
mind only the structured information. Unstructured data such as clinical notes can 
be converted to structured information by natural language processing tools. 
Radiomics information extracted from radiology information can be considered 
structured information if suitably represented.

8.1.1.2  Horizontally Partitioned Data and Vertically Partitioned Data
In addition to data structure, data partitioning which is another key factor needs to 
be considered in health data sharing. In practice, data are mainly partitioned in two 
different situations. The first situation is referred to as horizontally partitioned data 
which contains the same features from different data instances (e.g. patients). For 
instance, patients’ health data can be collected by several independent healthcare 
providers. Each provider collects the same features from different patients such as 
demographics information, hospital records, and laboratory results. Combining and 
analyzing data of various patients from different healthcare providers will result in 
a better understanding of certain diseases. Figure 8.1 shows an example of horizon-
tally partitioned data.

The second situation is referred to as vertically partitioned data, where different 
data (healthcare) providers collect different features but from the same group of 
patients. For example, one healthcare provider collected patients’ demographics 
information, hospital records, and laboratory results, the other one owns previous 
diagnosis, current medication, and treatment plan of the same group of patients. 
When we need to predict the best treatment plan for some patient, data from both 
healthcare providers are required. Combining vertically partitioned data will enlarge 
the observations of patients and knowledge of certain diseases. Figure 8.2 shows an 
example of vertically partitioned data.

8 Privacy-Preserving Federated Data Analysis: Data Sharing, Protection, and…
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Hospital A

ID Sex Age BMI ...

1000 Female 35 22 ...

1001 Male 41 24 ...

1002 Male 52 26 ...

1473 Male 28 23 ...

1475 Female 67 26 ...

1476 Male 34 24 ...

1623 Male 43 25 ...

1624 Male 39 28 ...

1627 Female 21 20 ...

...

...

...

Hospital B

Hospital C

Fig. 8.1 Example of 
horizontally 
partitioned data

ID Sex Age BMI ... Insulin T2D ...

1000 Female 35 22

Hospital A Clinic C

... 24mlU/L No ...

1001 Male 41 24 ... None None None

1002 Male 52 26 ... 28mlU/L Yes ...

1004

...

Female 23 21 ... 22mlU/L No ...

Fig. 8.2 Example of vertically partitioned data
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8.2  Prerequisites

Privacy-preserving data sharing in healthcare is dependent on a number of prereq-
uisites. These need to be addressed carefully before actually starting the machine 
learning process. In this paragraph, we will describe the topics of data extraction 
(Sect. 8.2.1), representation and FAIR data principles (Sect. 8.2.2), network infra-
structures (Sect. 8.2.3), distributed learning algorithms (Sect. 8.2.4), and data pro-
tection (Sect. 8.2.5).

8.2.1  Data Extraction

Distributed data analytics on radiotherapy data requires the data to be available in a 
meaningful manner. Within radiation oncology, data extraction for machine learn-
ing is a labour-intensive task, as many data silos (isolated data collection within an 
organization) exist where data resides. In general, we need to connect to different 
data sources, extract data from these sources using local querying dialects, and 
afterwards store the extracted data in a central storage within the hospital. These 
steps need to be performed for different information systems used in radiation 
oncology. We will describe the most common systems in this paragraph. First, we 
need to include the Electronic Medical Record (EMR), where general patient char-
acteristics are stored (e.g. age, gender, and diagnostic, geographical, and follow-up 
information such as complication and quality of life scores). Second, medical 
images (for diagnostic, treatment, and validation purposes) are stored in a picture 
archiving and communication system (PACS). Although images cannot be used 
directly in predictive model training, extracted information from these images can 
be used. Third, treatment planning-related information (e.g. radiation plan informa-
tion regarding beams and dose) needs to be incorporated, as the treatment planning 
system (TPS) stores information in its own database, as well as in the PACS. Fourth, 
the record and verify system (R&V) holds information regarding the planned treat-
ment (e.g. dose, fractionation, beams) and the actual delivery. This information is 
also needed during machine learning, e.g. to determine structural differences in the 
planned and delivered treatment. Other systems (e.g. sources containing biological 
data) may apply in specific or future settings; however, we’ve specified only the 
general sources of information used for machine learning.

In the distributed learning setting, extracting data from different information sys-
tems within the hospital is a challenging task. Different institutes use products from 
different vendors and as such need a customized approach for data extraction. The 
extracted data then has to be curated in a manner that the data is Findable, Accessible, 
Interoperable, and Reusable (FAIR) [3] (Sect. 8.2.2).

8.2.1.1  ETL Tooling and Data Warehousing
To (continuously) extract data and store it in a central location, one could consider 
the use of extraction, transformation, and load (ETL) tooling. This tooling can 
extract data from different sources (different systems), reconcile data belonging to 
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one patient (transformation), and store the data in a central database: the data ware-
house (DWH). This could be useful for large-scale machine learning and research 
institutions with many smaller-sized trials. As shown by Roelofs et al. [4], imple-
menting a data warehouse can significantly reduce the data collection time, in com-
parison to manual data extraction and collection. In regard to distributed settings, 
this also reduces the number of systems/databases a user/researcher has to include 
in the data request/retrieval process, thus reducing the time to merge all different 
datasets. Furthermore, as data are extracted and inserted into the DWH, it should be 
known what the data represents. The ETL process should therefore be well docu-
mented regarding queries, transformations, and the meaning of the stored data in the 
DWH. In comparison to the DWH, directly querying the source system for research 
purposes has several disadvantages. These disadvantages are mainly on the topics of 
query and data validity and query load on production/source systems. When a DWH 
is in place, query validity should not be an issue (as the data is checked before being 
incorporated in the DWH). Furthermore, query load issues should be mitigated, as 
the DWH should run on a different database/server as the production/source sys-
tems, and therefore cannot affect clinical operations.

8.2.1.2  Image Biomarker Extraction
As stated in Sect. 8.2.1, the intrinsic information of images (not just the readily 
available metadata) needs to be extracted from the actual image slices. Extraction of 
image “features” is not a standard functionality of a PACS; however, features may 
sporadically be available as TPS systems may store additional information in the 
metadata of the DICOM images. If features are stored in the metadata, these values 
are needed to be validated, especially in a distributed setting where different sites 
may use different TPS systems, which could implement different algorithms to cal-
culate these features.

When there are no (or only a small number of) features already available, every 
site in the distributed setting needs to implement a feature extraction pipeline which 
calculates variables based on the images available in the local PACS. As the local 
PACS stores CT and/or PET images, delineated contours (RTSTRUCT), planned 
(RTPLAN), and delivered (RTDOSE) dose information, the number of features to 
extract becomes larger. For example, we can extract information regarding the 
tumour volume, maximum diameter, specific points of the dose-volume histogram 
(DVH) for target volumes or organs at risk, tumour activity/metabolism, and differ-
ences between planned versus delivered dose. Furthermore, radiomic analysis on 
these images produces more than 200 features, based on more advanced image pro-
cessing algorithms (by calculating intensity distribution metrics based on, e.g. 
Fourier transformations and wavelets) [5]. Several of these features are potential 
imaging biomarkers: features which have prognostic and predictive value in terms 
of patient outcome or tumour response.

Preferably, this feature extraction pipeline should use common communication 
protocols, such as DICOM (to receive images) and SQL (to send extracted features 
to a local database). This increases the possibility to reuse this pipeline in all sub-
mitting centres and increases the homogeneity of applications and calculation 
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algorithms used by different centres. Eventually, using equal feature extraction 
pipelines should result in easier comparison of features/variables between centres. 
Although we can generalize the applications and algorithms used, including scan-
ning and reconstruction parameters, there is still a large variability at the input of 
this feature extraction pipeline: differences between delineations of different cen-
tres. As shown in literature, differences in delineations may occur between individu-
als, even within one site [6]. These differences in delineations could result in 
different outcomes after feature extraction. Especially when two different structures 
(e.g. rectum and bladder) are close to each other, for example, it might be possible 
that the delineating individual accidentally delineates the bladder wall as part of the 
rectum. This results in a higher SUV-mean/max and therefore could compromise 
the prognostic value of the extracted features.

Based on the examples of delineation differences and calculation applications/
algorithms used, it is important to specify the provenance of a specific variable: how 
did we acquire/extract this information (and which algorithms did we use)? And 
what are the sources used to extract the information? We will elaborate on these 
questions in the next section.

8.2.2  Data Representation and FAIR Data Principles

One of the prerequisites for distributed machine learning using PHT is that the data 
needs to be FAIR. FAIR principles emphasize on enhancing the machine interpret-
ability of data and data reuse. Data agnostic machine learning algorithms rely on the 
FAIR data descriptions published on each hospital FAIR endpoints. Data steward-
ship at the source plays an important role for driving distributed and federated 
machine learning a reality. The FAIR foundational principles are explicitly described 
by a more detailed 15 guiding principles.

Radiotherapy data can be made Findable by assigning globally unique and per-
sistent identifier and associating sufficient metadata. The metadata description is 
registered or indexed in a searchable resource. Some literature and implementation 
emphasize on using digital object identifiers for data and services involved in a 
distributed machine learning [7, 8].

FAIR repository at the radiotherapy departments in the hospital should host data 
in a way that is accessible using a globally acceptable, free and implementable pro-
tocol. Semantic Web technologies like the Resource Description Framework (RDF) 
and HL7 Fast Healthcare Interoperability Resources (FHIR) provide RESTful way 
for querying and accessing data.

Finally, FAIR emphasizes on the importance of data interoperability at the 
source. Interoperability as defined in the IEEE standard glossary “…is the ability of 
two or more systems or components to exchange information and use the informa-
tion that has been exchanged”. Each cross-institutional data exchange needs data to 
be syntactically and semantically interoperable. Syntactic interoperability means 
that the different stakeholders have to agree which (technical) protocol they use to 
transfer data, implying that data representation should be equal among participating 
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sites.One way of making data interoperable is standardizing data at the source. 
However, standardization alone is not sufficient and often different stakeholders 
may choose to implement different standards (HL7 Version 2.X and 3.X, OpenEHR 
and ISO 13606, HL7 CDA, XDS, OHDSI OMOP, etc.). Next to standardization of 
syntactical interoperability, semantic interoperability needs to be in place. We will 
use the definition of Valentini et al. [9] to describe semantic interoperability: “The 
ability of any communicating entity (not only computers) to share unambiguous 
meaning. For computers, this is the ability to exchange information and have that 
information properly interpreted by the receiving system in the same sense as 
intended by the transmitting system”. In general, this means that the receiver cannot 
interpret information differently, as the sender uses unambiguous terms to describe 
that information. Therefore, we need to use terminological systems which are 
known by both sender and receiver. As defined by De Keizer et al. [10], a termino-
logical system can be a thesaurus, classification, vocabulary, nomenclature, or cod-
ing system. A terminological system may pertain to more than one of these systems. 
For example, ICD-10 [11] is a coding system and vocabulary (as the term is accom-
panied by a definition); another example is the National Cancer Institute’s Thesaurus 
(NCIT) [12], which (in addition to a vocabulary) also contains a list of synonyms or 
other relationships. SNOMED CT is extensively used in healthcare systems for cod-
ing concepts for diseases, findings, procedures, and substance [13]. Finally, multi-
ple terminological systems can be embedded in an ontology, where concepts from 
terminological systems are reused and relations of concepts in a specific domain are 
described. Furthermore, an ontology can be used as a consensus model to represent 
data within a specific domain (e.g. radiation oncology) between different participat-
ing sites [10].

8.2.2.1  Relational Databases and Ontologies
In regard to distributed learning, we need to make sure every participating site uses 
the same database structure to be able to uniformly query (or federate) the data 
warehouse (DWH) database (Sect. 8.2.1.1). This database structure can be derived 
by creating a so-called entity-relationship (ER) model, based on the ontology; how-
ever, it needs to be adhered by all centres. An example to derive this ER model is the 
normalized universal approach described by Gali et al. [14]. Next to this database 
structure, it is important to use the same database system, as different database sys-
tems/vendors have different dialects. To mitigate differences in database 
systems/vendors, it is also possible to use automatic conversion libraries such as 
Hibernate (http://hibernate.org/), although these systems add another layer of com-
plexity when performing queries and/or data federation.

When adhering to an ontology, values from local systems need to be replaced 
with standardized values from terminological systems as defined in the ontology. 
For example, the property biological sex containing the text “male” or “female” 
needs to be replaced by NCI Thesaurus code C20197 or C16576, respectively. 
Another participating site may use 0 and 1 or “m” and “f”; however, within the 
DWH database, all sites should use the NCI Thesaurus codes for semantic interop-
erability. This conversion of values is typically done in the transform step of the 
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ETL process. Therefore, the ETL process needs to be tailored per participat-
ing centre.

Although data representation is possible within relational databases, it is cum-
bersome to maintain in a distributed machine learning setting. As new results give 
new insights into biological concepts and relationships, the need for extra variables 
is rapidly growing. Given this fact, it is inevitable that a distributed network for 
machine learning will have substantial downtime. For example, when a new concept 
is added to the ontology, every participating site needs to update their ETL system 
and DWH database structure, to become up to date with the new ontology version. 
This may take some time, as administrators of the ETL and DWH system need to 
validate whether this change is valid and does not compromise patient de- 
identification. If one of the queried columns is not available, the Relational Database 
Management System (RDBMS) will result an error rather than an empty result set. 
Therefore, it might be that the whole federation/distributed querying system may 
not work (if proper error handling is not in place). In this example, we used the addi-
tion of a column, a relatively easy task which occurs frequently. However, the more 
complex the changes in the ontology and database structure, the more time and 
effort it will take to get the network up and running again.

8.2.2.2  Semantic Web, RDF, and Linked Data
One of the solutions to cope with rapidly changing ontologies in a distributed set-
ting is to move from relational databases to Semantic Web technologies [15, 16]. In 
this paragraph, we will only discuss the Resource Description Framework (RDF), 
linked data, and the SPARQL protocol and RDF query language (SPARQL) as a 
subset of Semantic Web technologies.

Resource Description Framework
RDF is a standard, recommended by the World Wide Web Consortium (W3C) [17], 
and can be seen as a flexible alternative for the relational database. Where “tradi-
tional” relational databases store their data in a structure of tables and columns, the 
RDF specifies only one table with three columns named subject, predicate, and 
object. Each row in this single table repository is called a triple, as it only has three 
cells. Due to this basic difference in structure, the concept of data representation is 
also different. Because of this fixed table structure, the ontology becomes more 
important and serves as a data model consensus between centres.As an example, we 
have an ontology describing patients and their first name, last name, biological sex, 
and age. Shows the visual representation of this ontology. The RDF triples based on 
this ontology are represented in. Figure  8.3 shows the rdf representation of the 
example ontology.

Unique Resource Identifiers and Linked Data
To assure semantic interoperability, we will use the concept of unique resource 
identifiers (URIs), which is incorporated in the RDF specification. The RDF speci-
fication states that all resources (concepts and predicates) need to have a URI, which 
can be a unique resource locator (URL; “http://www.mydomain.org/
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ontology#hasFirstName”main.org/ontology#hasFirstName) or a unique resource 
name (URN; e.g. myOntology:hasFirstName). This means that someone needs to 
own a domain name (e.g. mydomain.org) and is administrator of this domain. If this 
is the case, he or she can make unique URLs for this domain, for example, to create 
a unique URI for patient 1001 (e.g. http://www.mydomain.org/rdf#patient1001). If 
the domain administrator assigns a specific sub-path of the domain to a dataset 
(called a namespace), for example, http://www.mydomain.org/rdf#, then this sub- 
path can also be substituted by a prefix, for example, “mySet”. This namespace can 
then be used to shorten the notation of a unique patient, as shown in. This concept 
of unique resources also holds for ontologies, wherein the prefix “myOntology” can 
be used to define the namespace http://www.mydomain.org/ontology# and the pre-
fix “ncit” refers to the unique location of the NCI thesaurus. As everyone should use 
the same, unique namespaces, the use of URIs enforces semantic interoperability. 
Therefore, semantic interoperability is enforced within the resource description 
framework.

Next to the enforcement of semantic interoperability, the use of URIs has a sec-
ond benefit, namely, the possibility of linked data. As every resource has its unique 
URI, an RDF store at site A may point to a resource at site B by using the URI 
of the resource at point B [18]. For example, if a patient underwent a diagnostic 
scan at hospital A and was treated in clinic B, then clinic B can specify the 
treatment and link it to the patient resource with the unique URI used in hospi-
tal A.main.org/ontology#hasFirstName) or a unique resource name (URN; e.g. 
myOntology:hasFirstName).

Querying Using SPARQL
We have described how data can be represented in RDF, and how URIs enforce 
semantic interoperability and linked data. But how can we retrieve this data from an 
RDF store? To query these RDF stores, the W3C has adopted the SPARQL protocol 

Patient

xsd: string

hasLastName
hasAge

hasFirstName

hasBiologicalSex

xsd: string

xsd: string

xsd: string

Fig. 8.3 Visual 
Representation of the 
sample ontology

A. Choudhury et al.

http://www.mydomain.org/ontology#hasFirstName”main.org/ontology#hasFirstName
http://mydomain.org
http://www.mydomain.org/rdf#patient1001
http://www.mydomain.org/rdf
http://www.mydomain.org/rdf
http://www.mydomain.org/ontology#
http://a.main.org/ontology#hasFirstName


145

and RDF query language (SPARQL) [19]. Most RDF stores have integrated a 
SPARQL endpoint in their RDF store. A SPARQL endpoint is the public interface to 
receive SPARQL queries and return a result table, all using the HTTP protocol. In 
contrast to SQL queries, SPARQL queries do not search tables due to the underlying 
RDF store structure. SPARQL queries perform pattern matching on the triples in the 
triple store, where variables can be used to retrieve unknown values or to dynami-
cally link values. For example, the query in Listing 8.1 will try to retrieve the first 
name, last name, and age for all patients. We will shortly describe the lines in this 
query example.

On line 1–3, the shorthand (prefix) notations for URL locations are defined. Line 
5 defines the variables retrieved from the pattern matching; these variables have to 
start with a question mark. Lines 6–11 define the actual pattern searched for. As 
shown in Listing 8.1, our basic pattern is to retrieve all patient resources which have 
a predicate called “rdf:type”, which refers to the terminological code of a patient, 
defined in the NCI Thesaurus (using the prefix “ncit:”, which is replaced by the full 
URL at line 3). Afterwards, we extend our pattern match by including extra proper-
ties for every resource linked to the patient resource. If the linked resources of the 
patient variable have a predicate matching to our specified property (in our ontol-
ogy), then the variable firstName, lastName, or age will be filled with the found 
value. If not found, then the query will return the patient resource URI; however, the 
variables firstName, lastName, or age are not filled in (due to the “OPTIONAL” 
keyword).

Next to querying one RDF store, a SPARQL query can also be federated to mul-
tiple stores. This is an advantage in regard to distributed learning, as a single query 
can retrieve data from multiple sources. Due to the structure of RDF stores, data 
residing in geographically separated RDF stores can easily be merged, as the data 
structure is the same for all stores (1 table; 3 columns) and all RDF stores should use 
URIs. Federation can be done both horizontally (different patients in different RDF 
stores) and vertically (information of a single patient stored in multiple RDF stores). 

Listing 8.1 Basic SPARQL query retrieving patient resources, related first and last names, and 
age of patient data stored in an RDF store, based on the ontology defined in Fig. 8.3

8 Privacy-Preserving Federated Data Analysis: Data Sharing, Protection, and…



146

An application of horizontal federation in SPARQL queries is shown in Listing 8.2; 
an application of vertical federation is shown in Listing 8.3.

In these examples, we will use the “SERVICE” command of SPARQL to iden-
tify the execution of a subquery (or pattern match) on a different SPARQL end-
point. In Listing 8.3, we used the exact same pattern query in both services/
subqueries (line 7–19). Both subqueries are sent to the respective endpoints, and 
the subquery results are merged at the federation endpoint. Finally, the requested 
variables are returned to the requesting application or user. In Listing 8.3, both 
services have different patterns to match. The first service (line 7–11) searches for 
all patients and their first/last name on SPARQL endpoint 1. The second service 
(line 13–15) will reuse the patient resources found in endpoint 1 and tries to find 
patterns matching the hasAge predicate for these given patient resources. When 
found, it will use the object linked to the hasAge predicate (in this case a literal of 
type integer) and store it in the variable “?age”. Finally, the query engine will 
return the output as one table (using the variables of line 5 as columns), including 
information retrieved from both endpoints.

In this paragraph, we have presented an alternative to the widely known rela-
tional databases to represent and retrieve data. The use of Semantic Web technolo-
gies, and especially RDF, has several advantages over relational databases. 
Especially the meta-structure of RDF (independent of the modelled domain) and the 
use of URIs are useful with regard to a flexible storage solution while inherently 
adopting semantic interoperability and linked data.On the other hand, using 

Listing 8.2 An example of horizontal federation in a SPARQL query
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Semantic Web technology has some downsides when used in distributed machine 
learning. The main downside is that local institute staff needs to be introduced to 
Semantic Web technologies, in order to maintain these data repositories and end-
points. Furthermore, development in the field of RDF stores/repositories is an ongo-
ing process and is not yet comparable to relational databases in terms of reliability 
and performance, especially in daily clinical practice. On the contrary, for research 
projects (where uptime is less critical), the Semantic Web is more favourable 
because of its flexibility in storage and data structures.

8.2.2.3  HL7 FHIR and REST-APIs
Another way to ensure that the “I” part of the FAIR principles is met is to use HL7 
FHIR data standardization. FHIR describes exchangeable information in the form 
of resources. Resources are the building blocks of FHIR, well defined by a set of 
metadata description and a human readable part. Data elements and metadata 
within a resource are associated with a suitable coding terminology, thus empha-
sizing also on the semantic interoperability aspect. Each FHIR resource is a unique 
entity identified by a unique identifier (URI) and represented in XML or JSON 
format. This means that all FHIR resources can be accessed in a RESTful way. In 
addition to describing the resources, FHIR also provides REST application pro-
gramming interface to query these resources. The central resource of FHIR is the 
patient resource. All other resources are built on top of this resource and are linked 
by URIs. Figure 8.4 shows the relationship of the Patient resource to other resources 
in FHIR.

Figure 8.5 shows the visual representation of the information from Fig. 8.3 and 
and Table 8.1: RDF representation of a patient based on the ontology of Table 8.1. 

Listing 8.3 An example of vertical federation in a SPARQL query
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Condition
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Fig. 8.4 Snapshot of the relationship of the Patient resource to other resources in FHIR

Patient (DomainResource)

b. FHIR Resources b. Json Representation

Condition (DomainResource) {
“resourceType”: “Patient”,
“id”: “645116”,
“text”: {
“status”: “generated”.
},
“name”: [ {
“family”: “Doe”,
“given”: [”John”]
} ],
“gender” : “male”
“birthDate” : “1951-08-11”
}

identifier: identifier [0..*]

a b

active: boolean [0..1]

name: HumanName [0..*]

birthDate: date[0..1]

gender: code [0..1]
<<AdministrativeGender!>>

identifier: identifier [0..*]

clinicalStatus:
CodeableConcept[0..1]

code : CodeableConcept[0..1]
<<Condition/Problem/
DiagnosisCo...??>>

recordDate: dateTime[0..1]

subject: Reference [1..1]
<<Patient l Group>>

Fig. 8.5 (a) shows the visual representation of the information from Fig. 8.3 and Table 8.1. 
Additionally, we also show how the Patient resource is linked to the Condition resource through 
the resource identifier of the Patient resource. (b) shows the json representation of an instance of 
the patient resource

Table 8.1 RDF representation of a patient based on the ontology of Fig. 8.3

Subject Predicate Object
mySet:patient1001 rdf:type ncit:C16960
mySet:patient1001 myOntology:hasFirstName “John”^^xsd:string
mySet:patient1001 myOntology:hasLastName “Doe”^^xsd:string
mySet:patient1001 myOntology:hasBiologicalSex ncit:C20197
mySet:patient1001 myOntology:hasAge “67”^^xsd:integer
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Additionaly, we also show how the Patient resource is linked to the Condition 
resource through the resource identifier of the Patient resource.

The patient records in the form of resources can be queried with the FHIR REST 
API. Below we show an example FHIR query for retreiving all patients born after 
1st January, 1970 who are diagnosed with primary neoplasm of lung (lung cancer). 
The <base_url> is the address of the FHIR server hosting the resources.

Example:  <base_url>Condition?_include=Condition:patient.
birthDate=le1970- 01-1&code=http://snomed.info/sct|93880001

8.2.3  Network Infrastructure

The previous section describes how to extract information from multiple sources 
(databases, image archives) and to apply standardized terminological systems on 
the data extracted from these sources. Furthermore, we have described the impor-
tance of FAIR data representation in a privacy-preserving federated machine learn-
ing setup. In this paragraph, we will combine the topics of the previous paragraphs 
and explain how we can use them together. First, we will describe the institutional 
infrastructure, after which we will describe the privacy-preserving distributed/fed-
erated machine learning infrastructure, i.e. Personal Health Train (PHT) [8].

8.2.3.1  Institutional Infrastructure
The institutional infrastructure lays the foundation of fetching data from many dif-
ferent systems within the hospital and provides a single access point for the outside 
world (e.g. participating sites in the distributed machine learning setting). We will 
describe two different approaches:

• Traditional ETL and DWH.
• FAIR data repository.

Traditional ETL and DWH
In the approach using relational databases (Sect. 8.2.2.1), records from different 
source systems (e.g. EMR, PACS, TPS, and R&V) are merged using an ETL tool 
and converted into the requested data formats following standards used by all col-
laboration. The merged and transformed data are being saved in the DWH database. 
This database will afterwards be queried when requesting data for machine learning 
purposes. Therefore, this database needs to be compliant to the ontological structure 
(among all participating centres). When the ontology is altered, all participating 
centres need to update the DWH database structure, as well as the transform and/or 
storage scripts in the ETL tooling. Figure 8.6 shows the institutional infrastructure 
for getting data from multiple sources into a single DWH within the hospital.

FAIR Data Store
Different hospitals use products from different vendors and follow different health-
care standards. This means that the data representation at the source may be differ-
ent for different centres (Sect. 8.2.2). Instead of hosting data in a SQL DWH with 
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exactly same schema, hospitals may store the data in a FAIR data endpoint with 
enough metadata description. Each centre may choose different representations 
locally while following the FAIR data principles. We describe four different 
approaches for hosting FAIR data endpoint within the centres.

• Traditional ETL and DWH with a FAIR repository.
• Traditional ETL and DWH with a virtual FAIR repository.
• Virtual FAIR repository per institute.
• Virtual FAIR repository per source and institute.

Traditional ETL and DWH with a FAIR Store
This approach uses an FAIR data endpoint on top of the traditional ETL and DWH 
approach (Fig. 8.7). It enables the possibility to create an institutional DWH instead 
of a DWH dedicated for the study. Afterwards, the “Database to FAIR data” conver-
sion application reads the DWH database and transforms the data, taking into 
account a given ontology. This FAIR endpoint will afterwards be queried when 
requesting data for machine learning purposes. Only the “Database to FAIR end-
point” application needs to follow the rules and data structure defined in the ontol-
ogy. When the ontology is altered (e.g. adding an extra data element), only this 
database-to-FAIR application needs to be altered (when the information is already 
available in the DWH). Updating the FAIR store is done by clearing and repopula-
tion and is performed at specific time intervals.

Traditional ETL and DWH with a Virtual FAIR Store
This approach uses only the database-to-FAIR conversion application on top of the 
traditional ETL and DWH approach (Fig. 8.6). This approach is almost equal to the 
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physical FAIR store approach (Fig. 8.7); however, it has one difference in convert-
ing data from relational databases to FAIR.

In this case, the “Database to FAIR” application acts as a SPARQL endpoint or 
FHIR endpoint, accepting SPARQL queries or FHIR queries and returning the 
result of these queries. There is no data stored, as there is no RDF store, only a 
SPARQL endpoint or FHIR endpoint. When performing a SPARQL query, the 
database- to-FAIR application will transform SPARQL queries and/or FHIR queries 
into SQL queries and executes these SQL queries on the DWH. In regard to main-
tenance, this option holds the same requirements as using the physical RDF store. 
The only difference is the absence of an intermediate RDF store, resulting in real- 
time results of the data available in the DWH (Fig. 8.8).

Virtual FAIR Store per Institute
As the DWH usually is not a real-time representation of the clinically available 
data, this approach removes the DWH and directly queries the source systems. In 
this approach, the database-to-FAIR application is functioning as a SPARQL end-
point without an RDF store and converts SPARQL queries into SQL queries for the 
different source systems (Fig. 8.9). It therefore creates challenges for the database-
to- FAIR application, as it needs to transform data (to convert local terms to stan-
dardized terms), which was previously done by the ETL tooling. If multiple source 
systems are involved, the database-to-FAIR application merges the results from all 
sources and presents them as a SPARQL query result. The main benefit of this 
approach is that we can query for real-time data, rather than have to wait before the 
data is added to the DWH.  Furthermore, data redundancy of the intermediate 
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storage (the DWH) is not needed, reducing the need for storage resources. However, 
the main disadvantage is with regard to performance, as data and queries are trans-
formed on the fly.

Virtual FAIR Store per Source and Institute
This approach is almost similar to the “Virtual RDF store per institute” approach, 
however, with differences in data transformation and federation (Fig. 8.10). First, 
every local data source will get a FAIR endpoint, using, for example, the database- 
to- FAIR application. This application will convert the data from the source system 
into RDF, compliant with the ontology used in the distributed setting. Afterwards, 
the central federation endpoint will be used to merge all data elements from all 
database-to-FAIR applications/sources (vertical federation). In this setting, one 
SPARQL query will be sent to the federation endpoint. This federation endpoint 
will split the SPARQL query into several sub-SPARQL queries and execute these 
SPARQL queries on the SPARQL endpoints placed on top of the data sources. 
Afterwards, the federation endpoint will merge the results and return the merged 
result set to the application/user performing the query. The benefit of this approach 
is the distribution of computational resources to reduce the query execution time. 
The drawback is that n + 1 application (where n is the number of database-to-
FAIR applications) needs to be maintained and updated when the ontology 
changes.

EMR

PACS

R&V

TPS

FEDERATION
ENDPOINT

SPARQL / FHIR Query

FAIR Store

FAIR Store

FAIR Store

FAIR Store

Fig. 8.10 Infrastructure using a virtual FAIR store per source per institute
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8.2.3.2  Machine Learning Infrastructure
In the previous paragraph, we described the institutional infrastructure options to 
create one façade or data query endpoint for every centre. It depends on whether we 
are using centralized or distributed machine learning and whether we need an addi-
tional computation unit (e.g. a dedicated or virtual server) in each centre. Both dis-
tributed and centralized approaches can be implemented using relational databases 
or FAIR data store. The participating centres may choose different data representa-
tions at the source, but must agree to publish the metadata descriptions publically. 
In this paragraph, we will first describe the centralized machine learning infrastruc-
ture and afterwards move towards PHT.

Centralized Machine Learning Infrastructure
The general overview for the centralized multicentre infrastructure is shown in 
Fig. 8.11. The participating sites are displayed as a data store, as we do not need to 
know what the institutional infrastructure looks like. This approach gives participat-
ing centres the opportunity to establish the institutional infrastructure according to 
local policies. Additional to all institutional entry points, a central machine learning 
server (performing the computations) and a central federation point need to be set 
up. The central federation point will perform the horizontal federation between par-
ticipating centres. To ensure privacy, the data stores of the participating centres may 
limit external access by only allowing access from the central federation point. The 
central machine learning server will accept and execute algorithms (including que-
ries to execute on the central federation point). After the algorithm has finished, it 
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Central
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Central Machine
Learning server
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Machine Learning 
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will return the outcome of the computation to the external source which sent the job 
(algorithm + query). The researcher initiating the machine learning process will 
have no direct access to the data. However, it is important to mention that the data 
will be located outside the centres and as such may pose privacy and confidentiality 
issues related to sharing of patient data.

Distributed Machine Learning Infrastructure: The Personal Health Train
In this section, we will discuss the privacy-preserving machine learning in a distrib-
uted setting using PHT. The core rationale of PHT is to ensure data privacy by keep-
ing data at the source. This means that, unlike traditional approaches where data is 
collected centrally, PHT sends algorithm to the data source and fetches only the 
result. Each participating site or centre generates one or more set of results that are 
aggregated to obtain a global analysis result. Since no centre needs to share data, 
PHT stands as a privacy by design infrastructure. PHT is different from the central-
ized version with respect to computational locations. As shown in Fig. 8.12, the 
central federation point has been removed, and local computation units (machine 
learning slaves/agents) have been introduced. In this infrastructural setting, the cen-
tral machine learning server is a coordinating server. When a job (algorithm + 
query) is submitted to the central ML master, the algorithm is being split into smaller 
sub-algorithms. These sub-algorithms and queries are packed into sub-jobs and sent 
towards the local computation units. They will query the local endpoint and execute 
the sub-algorithm. After finishing the sub-algorithm, the results are sent back to the 
central ML master, which gathers the results from all local endpoints. The central 
master will then determine whether it will perform a new sub-job on all endpoints 
or aggregate values and sends the final (aggregated) result back to the job-submitter. 

Local ML
slave A

Central
Coordinating

Server

Local ML
slave A

Local ML
slave A

Local ML
slave A

Participating
site A

Participating
site B

Participating
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Participating
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Fig. 8.12 Distributed Machine Learning Infrastructure
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Since the researcher sending the algorithm is unable to know the exact data schema 
at the source, PHT depends on the FAIR data principles and FAIR data descriptions 
available at each centre. PHT leverages containerization technologies for packaging 
and sending algorithms to the distributed sources [20]. This ensures that the algo-
rithms are executed in system isolated and platform independent manner, thereby 
reducing the task of IT maintenance at the hospital side.

The different privacy concerns and how they are handled in a distributed manner 
are discussed below:

Data Privacy: Based on how individual patient records are distributed among 
different centres, data privacy mechanisms may vary (Sect. 8.1.1). For horizon-
tally partitioned data, PHT ensures data privacy by keeping the data at the source 
and only fetching analysis from the data [21–23]. For vertically partitioned data, 
cryptographic methods such as homomorphic encryption, secure multiparty 
computations, or differential privacy mechanisms are adopted to ensure privacy 
[24–26].
Model Privacy: Attackers and malicious users can reverse engineer the trained 
machine learning model to regenerate patterns of the original patient data [27, 
28]. Using differential privacy techniques and cryptographic mechanisms for 
storing and communicating the model parameters, model privacy can be achieved.
System and User Privacy: Adoption of proper authentication and authorization 
techniques secure malicious attackers from accessing the infrastructure. The 
researcher, data provider, and the server applications are granted access to the 
infrastructure only after proper authentication. All communication between the 
parties are encrypted using suitable cryptographic mechanisms.

8.2.4  Centralized and Distributed Machine Learning Algorithms

When the prerequisites regarding semantic interoperability, data structure, infra-
structure, and privacy preservation are in place, we can start performing machine 
learning. In this section, we merely touch upon centralized machine learning in 
favour of describing distributed machine learning approaches in full, which are con-
sidered superior for future, large-scope implementations.

8.2.4.1  Centralized Machine Learning
As described above, the centralized approach only needs one machine learning unit 
(Fig. 8.11). In this case, the machine learning system will query and retrieve data 
from the federation data store, irrespectively of knowing where the actual data comes 
from (except when provenance variables are included in this dataset). As the retrieved 
dataset is not different in comparison to traditional machine learning approaches, we 
can use standard machine learning toolboxes such as Weka [29], RapidMiner [30], or 
others [31]. The disadvantage is that data, with/without privacy preservation in place, 
is transferred to a central location at time of machine learning algorithm execution. 
This might contradict the policy of centres regarding data sharing.
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8.2.4.2  Distributed Machine Learning
The major difference between distributed and centralized machine learning is the 
transfer of data versus the transfer of training models. In the centralized approach, 
data is transferred to the machine learning system, whereas in the distributed 
approach the data stays within the institute. Rather than requesting a dataset, the 
distributed approach dispatches a sub-process of the machine learning algorithm 
towards the institutional machine learning unit and returns the result of this sub- 
process. In this setting, the amount of data per transfer diminishes; however, the 
data transfer frequency increases.

Federated machine learning is defined as process where N data owners 
(  1 2, ,.. )N

collaboratively train a machine learning model FED , in which any 

data owner does not expose its data i  to others [32]. Distributed learning or feder-
ated machine learning algorithm ideally should follow the four points as dis-
cussed below:

• The algorithm should be mathematically split in a manner that the global approx-
imation over distributed datasets is comparable to a centralized model trained on 
a single data source containing all the training data.

• The training process, in addition to the infrastructure should ensure that no data 
will ever leave the source.

• Re-engineering of the original training data from the trained model should not be 
possible and as such proper encryption mechanisms should be adopted.

As described in Sect. 8.1.1.2, patient data is partitioned horizontally or vertically 
among different centres. Based on how data is distributed across the centres, 
machine learning algorithms come in two different flavours: horizontal distributed 
(federated) algorithms and vertical distributed (federated) algorithms. The follow-
ing section describes the two categories briefly. We also introduce a third category, 
popularly known as Federated Transfer Learning.

Horizontal Distributed (Federated) Machine Learning
Horizontally partitioned data means that each centre contains exactly the same set 
of patient variables to train the algorithm. Patient data privacy in this scenario is 
ensured by keeping data at the source at every point of time during the training pro-
cess. This type of learning is also known as sample-partitioned federated learning 
and assumes honest participants and security against an honest-but-curious (semi- 
honest) server. This means that only the server can compromise the user privacy and 
data security of the participants [33, 34]. The training process of a horizontal feder-
ated machine learning with PHT or similar client server-based infrastructure usually 
consists of the following steps:

Step 1: The researcher initiates the training process by signalling the central server. 
The central server requests all sites to train a machine learning algorithm. In case 
of PHT, the machine learning algorithm can be wrapped in a Docker image and 
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stored in a private Docker registry. The private Docker registry is accessible only 
to the authorized users of the infrastructure.

Step 2: The data centres participating in the machine learning process train the algo-
rithms locally, compute the training gradients or model weights, encrypt and 
send it to the server.

Step 3: The server invokes the central averaging algorithm and performs a secure 
aggregation, e.g. via weighted averaging.

Step 4: The server sends the aggregated results to the participating centres.
Step 5: The centres update their respective models with the received gradients.

The iterations through the above steps continue until, the loss function converges, 
or the maximum allowed iterations are reached. Both non-linear and linear feder-
ated machine learning models are available in the literature. Table 8.2 lists some of 
the available linear and non-linear algorithms for horizontally portioned data:

A thorough explanation how distributed machine learning algorithms work is 
given by Boyd et al. [40] and Wu et al. [38]. Recent years has shown many interest-
ing studies involving distributed machine learning applied to radiotherapy or oncol-
ogy in general. Deist et al. [22] showed how machine learning with PHT can be 
scaled up to include a large distributed cohort (20,000+ patients). They trained a 
distributed logistic regression and optimized via the ADMM to predict 2-year post- 
treatment survival in lung cancer patients. Deist et al. [23] earlier presented a similar 
study by training SVM via ADMM to predict post-radiotherapy dyspnoea in lung 
cancer patients. Shi et al. [21] used PHT to train a distributed cox regression algo-
rithm to develop a radiomics signature for 2-year survival in lung cancer patients. 
Bayesian network models were studied by Jochems et  al. [42, 43]. Traditional 
machine learning with horizontal data partitioning has been widely explored and 
many algorithms and applications developed. Recent advancement in computing 
power has opened the gateway to neural networks and deep learning both in a cen-
tralized and distributed setup. Balachandran et al. [44] proposed a distributed deep 
learning algorithm to learn from medical images. The model has been trained by 
Cyclic Weight Transfer method, where one centre trains the model for a number 

Table 8.2 List of machine learning models for horizontal federated learning

Algorithms
Linear/
non-linear

Privacy 
mechanism Optimizer/remarks

Linear Regression 
[35, 36]

Linear

Logistic 
Regression [22, 
37]

Linear PHT, by design Grid binary logistic regression 
(GLORE) [38]

Cox Regression 
[21, 39]

Linear By infrastructure 
design

Support Vector 
Machines [23]

Non-linear PHT, by design Alternating direction method of 
multipliers (ADMM) [40]

FedAVG [41] Non-linear, 
neural network

Stochastic gradient descent 
(SGD)
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iterations and transfers it to the next centre. All centres train the model in a cyclic 
fashion until convergence is achieved. McMahan et  al. [41] proposed a different 
approach, where weights from all centres are aggregated by an aggregating algo-
rithm (FedAvg). While this method is a communication efficient way for training 
SGD based or DNN, it exposes the gradients or model weights and can be a privacy 
threat for the patient data. FedAvg with homomorphic encryption (AHE) or learning 
with errors (LWE) can be used to enhance the privacy and security features of the 
algorithm.

Vertical Distributed (Federated) Learning
Vertical distributed (federated) learning is conducted when each data centre hosts 
different sets of features of the same group of patients. Before training the algo-
rithms, records of patients have to be matched and linked among data centres. The 
most common way to link multiple vertically partitioned data is using unique identi-
fiers (e.g. social security number). The unique identifiers should be pseudonymized 
every time when vertical distributed (federated) learning starts at each data centre in 
order to prevent individuals from being re-identified. Unfortunately, very few exist-
ing works studied record linkage problem in vertically partitioned data scenario in 
the real-life use cases. As in the horizontal distributed (federated) learning, data 
centres in vertical distributed setting are also assumed to be honest-but-curious 
(semi-honest) to each other’s data.

Table 8.3 lists some recent privacy-preserving machine learning models and 
infrastructure learning from vertically partitioned data. Sun et  al. [45] deployed 
Personal Health Train architecture to learn vertically partitioned data of people with 
Type 2 Diabetes Mellitus using linear regression model. A trusted third party is 
required by their method to link multiple datasets and execute data analysis in a 
secure way. This is the only one study in the list which describes record linkage in 
vertical federated learning. Another linear regression model for vertically parti-
tioned data was proposed by [46]. Their approach combined multiparty computa-
tion techniques (Yao’s garbled circuits protocol) and conjugate gradient descent 

Table 8.3 List of machine learning models for vertical federated learning

Algorithms
Linear/
non-linear Privacy mechanism Optimizer/remarks

Linear Regression [45] Linear PHT, by design With trusted third party
Linear Regression [46] Linear Conjugate gradient 

descent
For high-dimensional data

Logistic Regression 
[25]

Linear Global gram matrix Fixed-Hessian Newton 
method to improve 
scalability

Generalized Linear 
Model [47]

Linear Distributed block 
coordinate descent

Can be extended for a hybrid 
partitioning situation

Support Vector 
Machines [48, 49]

Non-linear Specially designed for 
clinical/medical use

Regression and neural 
networks model [50]

Non-linear By infrastructure 
design

Stochastic gradient descent
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algorithm to solve high-dimensional data problem. The efficiency and scalability 
are the two major advantages of this study. Li et al. [25] proposed a new approach 
to solve binary logistic regression problem by using the kernel trick to obtain the 
global gram matrix. They also applied Fixed-Hessian Newton method to solve the 
time-complexity problem for large-size datasets. Van Kesteren et al. [47] proposed 
a method using distributed block coordinate descent which is applicable for all gen-
eralized linear models. This method is not only suitable for vertically partitioned 
data but also for the hybrid scenario of horizontal and vertical federated learning 
setting. In addition to linear models, Rahulamathavan et al. [48] and Zhu et al. [49] 
developed privacy-preserving SVM algorithms particularly for clinical and medical 
purposes. Rahulamathavan et al. [48] studied SVM Gaussian kernel-based classifi-
cation for a clinical decision support system, while Zhu et al. [49] developed an 
online medical pre-diagnosis framework using non-linear kernel SVM algorithm. 
Both studies applied cryptographic techniques to encrypt patients’ data. Mohassel 
and Zhang [50] proposed linear regression, logistic regression and neural networks 
models combining stochastic gradient descent methods and secure multiparty com-
putation techniques. The method is outstanding in efficiency and scalability but 
limited by the number of participating parties (only 2 parties).

8.2.5  Bioethics and Data Protection

Bioethical issues have been taken into consideration in the whole data lifecycle 
including data collection, data processing, data querying, data publishing, and data 
sharing. Individuals, data entities, and society involve in different part of data life-
cycle (Table 8.2). When the individual data are being collected by the data entities, 
data entities must explicitly state what data they are collecting, how long and where 
they will keep the data, for what purpose, the use of the data, if any other entities 
request access to the data and other information generated by the data, what is 
restricted by the data protection regulations in the area of data entities. As individu-
als, we should be aware of what data are being collected from us under which condi-
tions. Individuals are expected to provide reliable data which will be used for health 
research. It requires mutual efforts to ethically gather individual health data for 
scientific health studies. As the collected data are maintained and governed by data 
entities, the ethical issues in the data processing and querying have to be addressed 
by them. There are several existing methods of anonymization or pseudonymization 
to de-identify individuals which will be discussed below. Moreover, the actual data 
can be also generalized or modified to protect individual’s privacy after de- 
identification. In the data querying, data entities must ensure the query result is 
aggregated so that no individual data will be exposed. With a scientific purpose, data 
publishing is normally requested to create values and benefits for the population or 
the whole society. The ethical concerns need to be taken care of by the data entities 
and our society. It requires mutual trust between the data entity and the public. As 
we know, there is a trade-off between data privacy and data utility. When the data is 
strictly protected, its utility for research or clinical use will drop significantly due to 
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information loss caused by privacy-preserving methods. This balance needs to be 
made by all parties involved with trust and the urgency of the problem. The most 
complex situation happens in the data sharing stage which normally involves all 
parties—individuals, data entities, and society (Table 8.4). This situation is illus-
trated in the following subsections.

8.2.5.1  Bioethics and Data Protection: Individuals
Data sharing involves two or normally more than two data entities to collaboratively 
solve some data problems. For using both distributed and centralized multicentre 
infrastructures for data sharing, preserving individuals’ privacy is a major topic to 
consider. Data can be shared only when individuals get informed and grant the per-
mission to do so. In the most common case, individuals could give specific informed 
consent stating the time of data collection, the period of data usage, which data for 
what purpose, and how data will be processed. For a broader use, broad informed 
consent or dynamic informed consent can be applied under some conditions [51]. 
No matter which type of informed consents is given, individuals should be able to 
easily withdraw the informed consents at any time to restrict the use of their data.

If the distributed multicentre infrastructure is correctly implemented, it respects 
individual’s privacy more than the centralized setting as the results of the algorithm 
(e.g. a predictive model) are transferred instead of the original data. Individuals 
have full control of their own data so that they can withdraw or re-grant their per-
mission anytime even during data sharing and analysis process as the data never 
leave or be copied from the data entities. This is rather more difficult to do in a 
centralized manner. In addition, since the algorithms are transferred to the data, data 
entities and individuals could check and be informed what and how the data are 
being processed. The distributed multicentre infrastructure could outperform a cen-
tralized setting regarding respecting individuals’ privacy.

8.2.5.2  Bioethics and Data Protection: Data Entity
Although the distributed infrastructure is a better option considering preserving 
individuals’ privacy, this does not mean that the issues concerning privacy preserva-
tion are solved. For example, it is still possible to retrieve metadata about a dataset 
of a small group patient who is easily being re-identified. In this section, we will 
address several options for privacy preservation, ranging from pseudonymization to 
irreversibly modifying the original datasets. Despite all the options described below, 
we must state that, in our opinion, there is no standard method to ensure privacy 

Table 8.4 Data protection involvement in data lifecycle

Data 
collection

Data 
processing

Data 
querying

Data 
publishing

Data 
sharing

Individuals ✓ ✓
Data 
entities

✓ ✓ ✓ ✓ ✓

Society ✓ ✓

8 Privacy-Preserving Federated Data Analysis: Data Sharing, Protection, and…



162

preservation. The researcher/designer of the infrastructure will always have to find 
a balance between the loss of information (data utility) and the anonymity of partici-
pating patients (data privacy).

Pseudonymization
The first option for privacy preservation is bidirectional pseudonymization of patient 
identifiers, for example, replacing patient names and hospital’s patient identification 
numbers by study-specific alternatives. This can be achieved by maintaining a two- 
column table, where one column contains the patients’ identification number and the 
second column contains the study identification number for this patient. Variations to 
this concept may apply, for example, using an extra column to maintain the study 
where this mapping applies to. Typically, the pseudonymization of hospital to study 
identification numbers is done during the transform part of the ETL process. Other 
patient identifying information (e.g. first and last names) can be replaced by the same 
study ID or may not be incorporated and thus removed during the ETL process.

The second option is to use a unidirectional pseudonymization algorithm, for 
example, by hashing patient identifiers (e.g. using an SHA-{1–3} algorithm). This 
hash should be unidirectional, meaning that the pseudonymized patient identifiers 
cannot be reversed to the original identifiers. Unidirectional pseudonymization 
might be more appropriate than bidirectional pseudonymization, however might 
introduce problems when study data are needed to be linked to the actual patients. 
For example, when study results show a worse outcome for specific patients and 
when it is immoral to withhold this information to these patients.

Data Obfuscation
When using strict inclusion criteria with rare variables, it might be that the resulting 
dataset is very small and patients might become identifiable by combination. For 
example, if only two patients match some inclusion criteria and the biological sex 
(which is a requested variable) is different in both patients, we can identify these 
patients when querying local source systems. This issue holds for both the central-
ized and distributed infrastructures. To reduce the chance of compromising the ano-
nymity of patients, Murphy and Chueh [52] introduced a method for data obfuscation 
where (especially in the case of a small number of events/patients) results are obfus-
cated by returning a random value within a specific range based on the actual value. 
This method does not circumvent the problem completely, as someone with bad 
intentions is able to approximate the original value by sending the same request 
multiple times. To circumvent these actions, Murphy and Chueh proposed to imple-
ment an audit system, where performing the same query multiple times within a 
specific time span will result in a request denial. In this way, the system returns a 
value not completely representing the actual value, however returns a value within 
a tolerable margin (when not exceeding the maximum number of requests).

Data Perturbation
The downside on obfuscation is that it does change the distance (e.g. Euclidian dis-
tance) between points (e.g. patients or observations) in a k-dimensional space, 
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where every dimension may be a specific variable in the dataset. As the distance 
changes, it may influence the prediction model training algorithm and train a model 
that does not represent the actual data and values. This can lead to problems during 
validation, especially when the validation data is obfuscated, however in another 
way (due to the randomness in the obfuscation algorithm). Therefore, transforma-
tion of data might be a solution, as the whole dataset is transformed while maintain-
ing the distance between points. As shown by Liu et al. [53], this transformation is 
still not good enough for privacy preservation, as the original data can be derived 
using independent component analysis (ICA) or overcomplete ICA. To overcome 
this issue, Liu et al. advise to use their random projection-based multiplicative per-
turbation (RPBMP) method, which reduces the number of dimensions and trans-
forms the dataset while maintaining statistical information regarding the distance 
between variables. Using this method, it should not be possible to retrieve the origi-
nal values and would therefore obstruct the possibility to match variables to indi-
vidual patients. This RPBMP method is afterwards reused by Yu et al. [54], where 
they explored differences in dimension reduction options and applied it to a non-
small cell lung cancer (NSCLC) dataset. Data perturbation and dimension reduction 
are potential solutions to preserve privacy in a multicentre setting, although they 
could lead to issues when performing a risk analysis (identifying variables which 
influence a specific outcome). The risk analysis then can only determine which 
compressed dimensions are of influence; however, it cannot determine which bio-
logical (or source) variables/features are responsible for this influence in patient 
outcome.

8.2.5.3  Bioethics and Data Protection: Society
Comparing to individuals and data entities, our society is playing a big role in gain-
ing and maintaining the public trust and involvement for health data sharing and 
usage. Our society needs to find the balance between respecting individual’s privacy 
and creating maximal societal benefits and values by mining shared data. To achieve 
this goal, data itself is expected to be Findable, Accessible, Interoperable, and 
Reusable (FAIR), while data models and algorithms are required to be Fair, 
Accurate, Confidential, and Transparent (FACT).

8.2.6  Applications and Initiatives

In the previous paragraphs, we defined the prerequisites and described how to per-
form distributed machine learning. In this paragraph, we will discuss several initia-
tives and applications of distributed machine learning. It is not mandatory that all 
applications use the complete set of prerequisites described previously in this 
chapter.

8.2.6.1  Datashield
Datashield is an initiative for upscaling biomedical data science research by tak-
ing analysis to the data instead of bringing data to the analysis. The 
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infrastructure enables researcher to conduct collaborative data analysis on mul-
tiple centres, without having to bring data out of the centres. Similar to PHT, 
Datashield protects patient privacy by keeping data at the source. The infra-
structure comprises of three components: a computer server at each source study 
hosting an Opal database, the statistical programming environment (R), and 
Datashield specific R libraries installed on the data servers and client computers 
(federated analysis point) [55]. KETOS is a clinical decision support and a 
machine learning service based on Datashield. It leverages containerization 
technology, Docker and interfaces with web services using the HL7 FHIR stan-
dard to access patient data stored in OMOP (OMOP common data model—
OHDSI) database [56]. Successful studies regarding pregnancy outcomes, 
epidemiological data management, ageing and mental well- being, cardiovascu-
lar risk estimation, and metabolic syndrome prediction showed that federated or 
distributed analysis is indeed a viable solution where data sharing directly is not 
possible [57–61]. However, unlike PHT, Datashield constraints researcher by 
mandating use of dedicated software packages and databases. PHT is more flex-
ible with the choice of algorithm implementation and also with the data repre-
sentation at the source. This enhances the diversity of patient cohorts by 
including more number of centres and reducing IT administration burden on the 
hospital side.

8.2.6.2  I2B2
The Informatics for Integrating Biology and the Bedside (I2B2; http://www.i2b2.
org) project aims at integrating data from different biomedical disciplines and deliv-
ering this data to researchers. The project delivers tools to translate genomic and 
biologic findings to clinical findings (e.g. diseases or disorders). To be able to 
achieve this translational medicine approach, institutional data sources are feder-
ated in the I2B2 DWH using ETL tooling. The DWH database structure, called the 
Clinical Research Chart (CRC), is generic for medical purposes, as it does not 
define specific data fields. The database structure is basically a “star schema” where 
only patient information and observations are stored [62]. To describe all informa-
tion in an observation-centred storage, local terminologies, or standardized termino-
logical systems, are needed to define different types of observations. Afterwards, 
researchers can query/request data. When a specific dataset has been queried, this 
dataset can be stored in a separate database, using the same CRC database structure. 
In this separate database, researchers can clean/modify the dataset to their needs and 
execute machine learning algorithms on this dataset.In regard to multicentre 
machine learning, I2B2 supports merging multiple research databases using the 
Shared Health Research Information Network (SHRINE) tool [63], resulting in a 
federated research database of multiple institute research databases. Therefore, it 
enables the opportunity for centralized multicentre learning. In this approach, the 
terminology to define observations can be aligned when merging databases or can 
be kept separate [64]. In the latter approach, the researcher has to put in more effort 
in data alignment during the analysis, which is not favourable as it is prone to caus-
ing mistakes in the analysis.
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8.2.6.3  VATE
The VATE (“VAlidation of High TEchnology based on large database analysis by 
learning machine”) project shares the aim of the EuroCAT project. The major dif-
ference is that this project is based on open standards (regarding IT infrastructure) 
and uses Semantic Web technologies (e.g. RDF and ontologies) as a basis for data 
representation. Prior to this project, the involved institutes had developed a data 
infrastructure for research purposes using open standards [65]. Equal to the 
EuroCAT project, the VATE project has developed an umbrella protocol for rectal 
cancer [66]. Different from the EuroCAT project, the variables to record are classi-
fied into several levels regarding the completeness of datasets and are maintained in 
a publicly available ontology (http://www.github.com/RadiationOncologyOntology/
ROO). The rationale behind these rankings and this public umbrella protocol is that 
everyone who has data regarding rectal cancer patients can join this linked data 
network when the data is specified according to the ontological rules, irrespective to 
the number of available variables. Due to the chosen aim of training a Bayesian 
Network for rectal cancer on the VATE infrastructure, missing data could be imputed 
or ignored during training, as shown by Jayasurya et al. [67].

8.2.6.4  PCORnet
The Patient-Centered Outcomes Research Network (PCORnet) is a programme 
aiming at building a national research network linking datasets from clinical pro-
duction systems from multiple centres, using a standardized data platform [68]. The 
programme comprises 11 clinical data research networks (CDRN) and 18 patient- 
powered research networks (PPRN). The aim of the CDRNs is comparable to the 
previously described EuroCAT and VATE projects. The PPRN projects aim at the 
empowerment of patients. In these PPRNs, patients would supply the data instead 
of retrieving data from clinical systems. Therefore, the gathered data and research 
questions addressed by these projects are different from the CDRN projects [69]. 
The first (short-term) aims for the programme are to build and implement the net-
work in all the CDRNs and PPRNs and include one million patients in 18 months 
after the start of the project. Long-term aims are to perform (distributed) machine 
learning on the network.

8.2.6.5  FAIRHealth
The FAIRHealth project is one of the projects under the programme of Value 
Creation through Responsible Access and Use of Big Data (VWData, https://com-
mit2data.nl/vwdata) funded by the Dutch National Research Agenda. The goal of 
this project is to study annual healthcare costs in relation to the incidence of Type 2 
Diabetes Mellitus (T2D) without revealing any original data [24, 45]. We used 3283 
patients’ health data from De Maastricht Studie (www.demaastrichtstudie.nl), 
which is characterized by extensive phenotyping and provides information on the 
aetiology, pathophysiology, complications, and comorbidities of T2DM. All partici-
pants are aged between 40 and 75  years and live in the southern part of The 
Netherlands. We requested those attributes which were complete and consented. We 
linked these data to their health insurance reimbursement data from Statistics 
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Netherlands (www.cbs.nl). We extended Personal Health Train architecture and 
built up a FAIR data station at each site. The original data files (SAV, CSV) were 
automatically transformed to RDF by defining SPARQL construct queries, and sub-
sequently loaded into a triple store and made available as per the FAIR data station 
specification. To execute the analysis on the combined datasets, we used the Trust 
Secure Environment where also has a FAIR station. Briefly, in this infrastructure, 
data access is regulated by the data provider hosting the stations. If access is granted, 
the data providers encrypt the data and send these to the TSE. The TSE executes the 
researchers’ application and allows aggregated results to be returned to the 
researcher.

8.2.6.6  Personal Health Train Initiatives
Improving healthcare with PHT has gained popularity within the healthcare research 
community. There have been many initiatives within the European Region and also 
other parts of the world (https://pht.health- ri.nl/). Many different research organiza-
tions and hospitals joined hands to improve cancer by enhancing data sharing using 
PHT. AMICUS aims to improve cancer screening, detection and predict treatment 
outcome by utilizing distributed deep learning on medical images. My Best 
Treatment is a project which aims to make the best decision support system for the 
treatment of patients with terminal lung cancer. PROTRAIT aims to set up an infra-
structure for automatic data registration related to novel proton therapy in the 
Netherlands. CONVINCED aims to enable survival analysis on vertically parti-
tioned data while securing privacy using multiparty computation (Sect. 8.2.4.2.2). 
The aim of the RARECAREnet Asia is to study patterns of incidence and survival 
of rare cancers in Europe and Asia. The project “Understanding Oral Cavity cancer 
survival in the Netherlands and Taiwan” aims to perform federated analysis of sur-
vival of patients with oral cavity cancer based on cancer registry data. One of the 
notable projects, the EuroCAT umbrella project and the 20K Challenge are 
described below:

EuroCAT
The Euregional Computer-Aided Theragnostics (EuroCAT; http://www.eurocat.
info) project aims at reuse of clinical data for research purposes and to improve the 
speed and quality of clinical research. The project uses a distributed learning 
approach as described before, targeted at prediction models for lung cancer. To be 
able to perform this distributed learning approach, a so-called umbrella protocol 
was developed by the participating partners. This protocol describes the standard-
ized data collection, including the variables to record (and terminological systems 
to use), questionnaires, and informed consent document templates. The first version 
of the EuroCAT system used a DWH and ETL infrastructure at the local institutes. 
Afterwards, the DWH was replaced by an RDF store. The EuroCAT system has 
shown that distributed multicentre machine learning works and produces the same 
results as centralized learning when implemented correctly [70]. Furthermore, the 
project has shown that distributed multicentre learning does improve the robustness 
of prediction models when validating on an external dataset [71].
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Similarly other projects under the same umbrella like The “Dutch Network of 
Computer Assisted Theragnostics (duCAT)”, “Rapid Learning Infrastructure for 
outcome prediction models in rectal cancer (chinaCAT)”, and “A survival predic-
tion Model for NSCLC Patients Through Distributed Learning Across 3 countries 
(meerCAT)” all aim for improving cancer care outcome by leveraging distributed 
machine learning technologies.

20 K Challenge
The project aimed to show that PHT can be scaled up to many thousands of patients 
from several hospitals. FAIR data of eight healthcare data providers from five dif-
ferent countries are connected using PHT. A total of 23,203 patient cases across 8 
centres (Amsterdam, Cardiff, Maastricht, Manchester, Nijmegen, Rome, Rotterdam, 
and Shanghai) were connected. A logistic regression model predicting post- 
treatment 2-year survival was trained on 14,810 patients (clinical information only) 
treated between 1978 and 2011 and validated on 8393 patients treated between 2012 
and 2015. The project successfully showed that PHT can be scaled up to many thou-
sand patients from multiple centres [22].

8.2.7  Summary

In this chapter, we have seen that machine learning with distributed dataset is pos-
sible for both a centralized and federated approach. To be able to set up a distributed 
machine learning environment, several biomedical informatics-related issues need 
to be addressed. The most important issue is semantic interoperability among par-
ticipating centres. If the participating centres cannot agree on definitions, how do 
we know whether all data are equally formatted? Second, the infrastructure (both 
institutional and central) needs to be implemented, together with the chosen data 
representation. The choice for an infrastructure comes with the choice of a central-
ized or distributed approach. Third, privacy preservation needs to be addressed and 
may influence the choice for a centralized or distributed approach and the preserva-
tion measures implemented (e.g. uni- versus bidirectional pseudonymization or data 
perturbation versus transformation). When all prerequisites are met, the actual 
machine learning can be performed. In this part, a centralized approach should not 
be different from traditional machine learning. The distributed machine learning 
approach needs some modifications to traditional machine learning algorithms, as 
local outcomes need to be aggregated and combined at a central location. Therefore, 
in distributed machine learning, traditional algorithms need to be split into two 
parts: a central node performing the general algorithm and institutional nodes per-
forming delegated tasks requested by the central node. Finally, we have shown that 
distributed machine learning is possible in practice. Showing several projects and/
or initiatives where data from different locations are used to develop predic-
tion models.

In general, we have shown that distributed machine learning is not only a task for 
the “traditional” machine learning expert (which is already not the case in 
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healthcare and radiation oncology); however, it also needs other disciplines, such as 
expertise from the fields of terminology/ontology development, network/infrastruc-
ture, and security/privacy.
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9Computerized Detection of Lesions 
in Diagnostic Images with Early Deep 
Learning Models

Kenji Suzuki

9.1  Introduction

Computer-aided detection (CADe) and diagnosis (CADx) [1–4] have been active 
research areas in medical imaging. CADe/CADx is defined as detection/diagnosis 
made by a physician/radiologist who takes into account the computer output as a 
“second opinion” [1]. CADe focuses on a detection task, namely localization of 
lesions in medical images. CADx focuses on a diagnosis (characterization) task, for 
example, distinction between benign and malignant lesions. Computer-aided diag-
nosis without distinction between CADe and CADx is abbreviated as CAD.  As 
imaging technologies advance, a large number of medical images are produced 
which physicians/radiologists must read. They may overlook lesions from such a 
large number of medical images. Thus, CAD is becoming indispensable in physi-
cians’ decision-making. Evidence suggests that CAD can help improve the diagnos-
tic performance of physicians/radiologists [5–11]. Consequently, many investigators 
have developed CAD schemes such as those for the detection of lung nodules in 
chest radiographs [12–14] and in thoracic CT [15–17], those for the detection of 
microcalcifications/masses in mammography [18], breast MRI [19] and breast 
ultrasound (US) [20], and those for the detection of polyps in CT colonography 
(CTC) [21–23].

Machine learning (ML) plays an essential role in CAD, because objects such as 
lesions and organs in medical images may be too complex to be represented accu-
rately by a simple equation; modeling of such complex objects often requires a 
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number of parameters that have to be determined by data [24–26]. For example, a 
lung nodule is generally modeled as a solid sphere, but there are spiculated nodules 
and ground-glass nodules [27]. Although a polyp in the colon is modeled as a bul-
bous object, there are polyps that exhibit a flat shape [28, 29]. Thus, diagnostic 
tasks in medical images essentially require “learning from examples (or data)” to 
determine a number of parameters in a complex model. Because of its importance 
and significance, the field of ML in medical imaging became very active [30–32]. 
The special issues on ML in medical imaging were published in various journals 
[33–37]; a series of international workshops on this topic were held from 2010 
[38–41].

One of the most popular uses of ML in CAD is the classification of lesion candi-
dates into certain classes (e.g., abnormal or normal, lesions or non-lesions, and 
malignant or benign) based on input features (e.g., area, contrast, and circularity) 
obtained from segmented candidates (this class of ML is referred to feature-based 
ML or segmented-object-based ML). The task of ML is to determine “optimal” 
boundaries for separating classes in the multidimensional feature space which is 
formed by the input features [42]. The ML algorithms for classification include 
linear discriminant analysis [43], quadratic discriminant analysis [43], multilayer 
perceptron [44, 45], and support vector machines [46, 47]. Such ML algorithms 
were applied to lung nodule detection in chest radiography [48–51] and thoracic CT 
[15, 52–54], detection of microcalcifications in mammography [55–58], detection 
of masses in mammography [59], polyp detection in CT colonography [60–62], 
determining subjective similarity measure of mammographic images [63–65], and 
detection of aneurysms in brain MRI [66].

Recently, an ML area called deep learning [67–69] emerged in the computer 
vision field and became very popular in virtually all fields. This research “boom” 
started from an event in late 2012. A deep learning approach based on a convolu-
tional neural network (CNN) [70] won an overwhelming victory in a worldwide 
computer-vision competition, ImageNet Classification, with the error rate smaller 
by 11% than that in the second place of 26% [71]. Consequently, the MIT Technology 
Review named it one of the top 10 breakthrough technologies in 2013. Since then, 
researchers in virtually all fields, including medical imaging, have started actively 
participating in the explosively growing field of deep learning [67]. Details on deep 
learning algorithms can be found in Chap. 4.

More than a decade before this deep learning research boom started, an early 
deep learning model, called massive-training artificial neural networks (MTANNs), 
had been invented and developed in the field of medical imaging in 2002 [72]. The 
MTANNs were applied for the detection of lung nodules in chest CT in 2003 [73], 
end-to-end detection of lung nodules in 2009 [74], separation of bones from soft 
tissue in chest radiographs in 2004 [75, 76], and reduction of noise and artifacts on 
CT images in 2013 [77].

In this chapter, ML techniques and early deep learning models used in CADe and 
CADx schemes of the thorax and colon are described, including CADe schemes for 
lung nodules in chest radiography and thoracic CT, and those for the detection of 
polyps in CTC.
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9.2  Overview of Architecture of a CADe Scheme

A flowchart for a generic CADe scheme of lesions in diagnostic images is shown in 
Fig. 9.1. A CADe scheme generally consists of four core steps: (1) detection of lesion 
candidates, (2) segmentation of the detected lesion candidates, (3) feature analysis of 
the segmented lesion candidates, and (4) classification of the lesion candidates by use 
of a classifier with features (feature-based ML). The development of the detection of 
lesion candidates generally aims to obtain a high sensitivity level, because the sensitiv-
ity lost in this step cannot be recovered in the later steps. In the next step, the detected 
(or localized) lesion candidates are segmented, and connected- component labeling 
[78–86] is performed to identify each segmented candidate as an individual isolated 
object. Pattern features such as gray-level-based features, texture features, and morpho-
logic features are extracted from the segmented candidates. Finally, the detected lesion 
candidates are classified into lesions or non-lesions by using a classifier (or feature-
based ML). This final step is very important, because it determines the final perfor-
mance of a CADe scheme when the additional step of FP reduction is not employed. 
The development of the classification step aims to remove as many non-lesions (i.e., 
FPs) as possible while minimizing the removal of lesions (i.e., true-positive detections).

After the development of a CADe scheme, the evaluation of the stand-alone per-
formance of the developed scheme is the last step in CADe development. CADe 
research does not end by this step: the evaluation of radiologists’ performance with 
the use of the developed CADe scheme is the important last step in CADe research.

9.3  Machine Learning (ML) in CADe

9.3.1  Feature-Based (Segmented-Object-Based) ML (Classifiers)

An ML technique is generally used in the step of classification of lesion candidates. 
The ML technique is trained with sets of input features and correct class labels. This 

Diagnostic Image

Detection of Lesion Candidates

Segmentation of Lesions

Feature Analysis

Classifier (Feature -based ML)

Detection of Lesions

Deep Learning (e.g., 
MTANN, CNN, 

ResNet)

Diagnostic Image

Detection of Lesions

Fig. 9.1 Flowchart for a generic CAD scheme for detection of lesions in diagnostic images (left) 
and that for a deep-learning-based CAD scheme
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class of ML is referred to as feature-based ML, segmented-object-based ML, or sim-
ply as a classifier. The task of ML here is to determine “optimal” boundaries for sepa-
rating classes in the multidimensional feature space which is formed by input features 
[42]. A standard classification approach is illustrated in Fig.  9.2a. First, lesions 
(lesion candidates) are segmented by use of a segmentation method. Next, features 
are extracted from the segmented lesions. Then, extracted features are entered as 
input to an ML model such as linear discriminant analysis [43], quadratic discrimi-
nant analysis [43], a multilayer perceptron (or artificial neural network) [44, 45], and 
a support-vector machine [46, 47]. When an artificial neural network is used as a 
classifier, the structure of the artificial neural network may be designed by use of an 
automated design method such as sensitivity analysis [87, 88]. The ML model is 
trained with sets of input features and correct class labels. Feature selection is often 
used to select “effective” features for a given task. One of the most recent, promising 
feature selection methods is feature selection under the criterion of the maximal area 
under the receiver-operating-characteristic curve [89]. For details of feature-based 
classifiers, refer to one of many textbooks in pattern recognition such as Bishop [90], 
Duda et al. [42], Fukunaga [43], Rumelhart et al. [45], and Vapnik [46].
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Fig. 9.2 Difference between (a) feature-based (segmented-object-based) ML (classifier) and (b) 
deep learning
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9.3.2  Early Deep Learning Models

9.3.2.1  Overview
In 2002, an early deep learning model, called massive-training artificial neural net-
works (MTANNs), was invented and developed in the field of medical imaging [72]. 
The MTANNs were applied for the detection of lung nodules in chest CT in 2003 
[73], end-to-end detection of lung nodules in 2009 [74], separation of bones from 
soft tissue in chest radiographs in 2004 [75, 76], and reduction of noise and artifacts 
on CT images in 2013 [77]. CNNs were also applied for CAD in medical imaging 
before the start of the deep learning boom [70, 91–99].

Predecessor of the MTANNs was developed for tasks in medical image process-
ing/analysis and computer vision: (1) neural filters [100, 101] and (2) neural edge 
enhancers [102, 103]. Improved models of the MTANNs [23, 73, 74, 76, 104] were 
developed such as multiple MTANNs [13, 15, 73, 100, 101, 105], a mixture of 
expert MTANNs [22, 106], a multi-resolution MTANN [76], a Laplacian eigenfunc-
tion MTANN (LAP-MTANN) [107], and a massive-training support vector regres-
sion (MTSVR) [108]. The class of neural filters was used for image-processing 
tasks such as edge-preserving noise reduction in fluoroscopy, radiographs, and other 
digital pictures [100, 101]. The class of neural edge enhancers was used for edge 
enhancement from noisy images [102] and enhancement of subjective edges traced 
by a physician in cardiac images [103], which is recently called “semantic segmen-
tation” [109]. The class of MTANNs was used for classification, such as false- 
positive (FP) reduction in CAD schemes for the detection of lung nodules in chest 
radiographs (chest X-ray: CXR) [13] and thoracic CT [9, 15, 73], distinction 
between benign and malignant lung nodules in CT [105], and FP reduction in a 
CAD scheme for polyp detection in CT colonography [22, 23, 106–108]. The 
MTANNs were also applied to pattern enhancement and suppression such as sepa-
ration of bones from soft tissue in CXR [76, 104, 110–112] and enhancement of 
lung nodules in CT [74].

9.3.2.2  Difference Between Deep Learning and Feature-Based 
ML (Classifiers)

A major difference between deep learning models and ordinary classifiers (i.e., 
feature-based ML or segmented-object-based ML) is the input information, as illus-
trated in Fig. 9.2a, b. Ordinary classifiers use features extracted from a segmented 
object in a given image, whereas deep learning models use pixel values in an image 
patch in a given image as the input information. Although the input information to 
deep learning models can be features (see addition of features to the input informa-
tion to neural filters in [101], for example), these features are obtained from an 
image patch pixel by pixel (as opposed to ones from a segmented object or by 
object). In other words, features for deep learning models are features at each pixel 
in a given image, whereas features for ordinary classifiers are features from a seg-
mented object. In that sense, feature-based classifiers can be referred to as 
segmented- object-based classifiers. Because deep learning models use pixel/voxel 
values in image patches in images directly instead of features calculated from 
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segmented objects as the input information, segmentation or feature extraction from 
the segmentation results is not required. Although the development of segmentation 
techniques has been studied for a long time, segmentation of objects is still chal-
lenging, especially for complicated objects, subtle objects, and objects in a complex 
background. Thus, segmentation errors may occur for such complicated objects. 
Because with deep learning models, errors caused by inaccurate segmentation and 
inaccurate feature calculation from the segmentation results can be avoided, the 
performance of deep learning models can be higher than that of ordinary classifiers 
for some cases, such as complicated objects. Thus, deep learning does not require 
steps of segmentation and feature analysis, and it can obtain the final result of lesion 
detection from the input diagnostic images, as shown in Fig. 9.1, which is called an 
end-to-end ML paradigm.

A major difference between MTANN deep learning models and ordinary clas-
sifiers (or feature-based ML) and other deep learning models is the output infor-
mation. The output information from ordinary classifiers and other deep learning 
models such as CNNs is nominal class labels such as normal or abnormal (e.g., 
0 or 1), whereas that from neural filters, neural edge enhancers, and MTANNs is 
pixels in patches (local windows) or images, namely continuous values. Recently, 
deep learning models that can learn and output images have been proposed such 
as fully convolutional networks [109] and U-Net [113]. With the scoring method 
in MTANNs, output images of the MTANNs are converted to likelihood scores 
for distinguishing among classes, which allow MTANNs to do classification. In 
addition to classification, MTANNs can perform pattern enhancement and sup-
pression as well as object detection, whereas the other deep learning mod-
els cannot.

9.3.2.3  Early Deep Learning Model: Massive-Training Artificial 
Neural Network (MTANN)

An early deep learning model, an MTANN was developed by extension of the neu-
ral filters and neural edge enhancers to accommodate various pattern-recognition 
tasks [73]. A two-dimensional (2D) MTANN was first developed for distinguishing 
a specific opacity from other opacities in 2D images [73]. The 2D MTANN was 
applied to the reduction of FPs in computerized detection of lung nodules on 2D CT 
images in a slice-by-slice way [9, 15, 73] and in CXR [13], the separation of ribs 
from soft tissue in CXR [75, 76, 104], and the distinction between benign and 
malignant lung nodules on 2D CT slices [105]. For processing of three-dimensional 
(3D) volume data, a 3D MTANN was developed by extending the structure of the 
2D MTANN, and it was applied to 3D CT colonography data [22, 23, 106–108] in 
CADe of polyps.

The generalized architecture of an MTANN is shown in Fig. 9.3. An MTANN 
consists of an ML model (typically a regression model) such as a linear-output ANN 
regression model [102] and a support vector regression model [108], which is capa-
ble of operating on pixel/voxel data directly [102]. The linear-output ANN regres-
sion model uses a linear function instead of a sigmoid function as the activation 
function of the output-layer unit because the characteristics of an ANN were 
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improved significantly with a linear function when applied to the continuous map-
ping of values in image processing [102]. Note that the activation functions of the 
hidden layer units are a sigmoid function for nonlinear processing, and those of the 
input layer units an identity function, as usual. The pixel/voxel values of the input 
images/volumes may be normalized from 0 to 1. The input to the MTANN consists 
of pixel/voxel values in a subregion/sub-volume (image patch or local window), R, 
extracted from an input image/volume. The output of the MTANN is a continuous 
scalar value, which is generally associated with the center voxel in the subregion 
(image patch), and is represented by

 
O x y z t I x i y j z k t k i j k R, , , , , , , ,or ML or |( ) = − − − −( ) ( )∈{ }  (9.1)

where x, y, and z or t are the coordinate indices, ML(·) is the output of the ML 
model, and I(x,y,z or t) is a pixel/voxel value of the input image/volume. The struc-
ture of input units and the number of hidden units in the ANN may be designed by 
use of sensitivity-based unit-pruning methods [87, 88]. Other ML models such as 
support vector regression [46, 47] can be used as a core part of the MTANN. ML 
regression models rather than ML classification models would be suited for the 
MTANN framework, because the output of the MTANN is continuous scalar values 
(as opposed to nominal categories or classes, e.g., 0 or 1). The entire output image/

Input image
Output

likelihood map

Neural network
regression

Fig. 9.3 Architecture of 
an MTANN which is an 
early deep learning model
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volume is obtained by scanning with the input subvolume (local window) of the 
MTANN on the entire input image/volume. The input subregion/subvolume and the 
scanning with the MTANN can be analogous to the kernel of a convolution filter and 
the convolutional operation of the filter, respectively.

The MTANN is trained with input images/volumes and the corresponding 
“teaching” (designed) images/volumes for enhancement of a specific pattern and 
suppression of other patterns in images/volumes. The “teaching” images/volumes 
are ideal or desired images for the corresponding input images/volumes. For 
enhancement of lesions and suppression of non-lesions, the teaching volume con-
tains a map for the “likelihood of being lesions,” represented by

 
T x y z t, ,

.
or

a certain distribution for a lesion

otherwise
( ) = 


0  

(9.2)

To enrich the training samples, a training region, RT, extracted from the input 
images is divided pixel by pixel into a large number of overlapping subregions. 
Single pixels are extracted from the corresponding teaching images as teaching val-
ues. The MTANN is massively trained by use of each of a large number of input 
subregions (image patches) together with each of the corresponding teaching single 
pixels, hence the term “massive-training ANN.” The error to be minimized by train-
ing of the MTANN is represented by

 

E
P

T x y z t O x y z t
c x y z t R

c c= ( ) − ( ){ }∑ ∑
( )∈

1 2

, ,

, , , , ,
or T

or or
 

(9.3)

where c is a training case number, Oc is the output of the MTANN for the cth case, 
Tc is the teaching value for the MTANN for the cth case, and P is the number of total 
training voxels in the training region for the MTANN, RT. The expert 3D MTANN 
is trained by a linear-output back-propagation (BP) algorithm [102] which was 
derived for the linear-output ANN model by use of the generalized delta rule [45]. 
After training, the MTANN is expected to output the highest value when a lesion is 
located at the center of the subregion of the MTANN, a lower value as the distance 
from the subregion center increases, and zero when the input subregion contains a 
non-lesion.

9.4  CADe in Thoracic Imaging

9.4.1  Thoracic Imaging for Lung Cancer Detection

Lung cancer continues to rank as the leading cause of cancer deaths in the United 
States and in other countries such as Japan. Because CT is more sensitive than chest 
radiography in the detection of small nodules and of lung carcinoma at an early 
stage [114–117], lung cancer screening programs are being investigated in the 
United States [118, 119], Japan [115, 117], and other countries with low-dose (LD) 
CT as the screening modality. Evidence suggests that early detection of lung cancer 
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may allow more timely therapeutic intervention for patients [117, 120]. Helical CT, 
however, generates a large number of images that must be interpreted by radiolo-
gists/physicians. This may lead to “information overload” for the radiologists/phy-
sicians. Furthermore, they may miss some cancers during their interpretation of CT 
images [27, 121]. Therefore, a CADe scheme for the detection of lung nodules in 
CT images has been investigated as a tool for lung cancer screening.

9.4.2  CADe of Lung Nodules in Thoracic CT

9.4.2.1  Overview
In 1994, Giger et al. [122] developed a CADe scheme for the detection of lung nod-
ules in CT based on the comparison of geometric features. They applied their CADe 
scheme to a database of thick-slice diagnostic CT scans. In 1999, Armato et al. [52, 
123] extended the method to include 3D feature analysis, a rule-based scheme, and 
LDA for classification. They tested their CADe scheme with a database of thick- 
slice (10 mm) diagnostic CT scans. They achieved a sensitivity of 70% with 42.2 
FPs per case in a leave-one-out cross-validation test. Gurcan et al. [124] employed 
a similar approach, i.e., a rule-based scheme based on 2D and 3D features, followed 
by LDA for classification. They achieved a sensitivity of 84% with 74.4 FPs per 
case for a database of thick-slice (2.5–5 mm, mostly 5 mm) diagnostic CT scans in 
a leave-one-out test. Lee et al. [125] employed a simpler approach which is a rule- 
based scheme based on 13 features for classification. They achieved a sensitivity of 
72% with 30.6 FPs per case for a database of thick-slice (10  mm) diagnostic 
CT scans.

Suzuki et al. [73] developed a deep learning technique called an MTANN for the 
reduction of a single source of FPs and a multiple MTANN scheme for the reduction 
of multiple sources of FPs that had not been removed by LDA. They achieved a 
sensitivity of 80.3% with 4.8 FPs per case for a database of thick-slice (10 mm) 
screening LDCT scans of 63 patients with 71 nodules with solid, part-solid, and 
non-solid patterns, including 66 cancers in a validation test. This MTANN approach 
did not require a large number of training cases: the MTANN was able to be trained 
with 10 positive and 10 negative cases [126–128], whereas feature-based classifiers 
generally require 400–800 training cases [126–128]. Arimura et al. [15] employed a 
rule-based scheme followed by LDA or by the MTANN [73] for classification. They 
tested their scheme with a database of 106 thick-slice (10 mm) screening LDCT 
scans of 73 patients with 109 cancers, and they achieved a sensitivity of 83% with 
5.8 FPs per case in a validation test (or a leave-one-patient-out test for LDA). Farag 
et al. [129] developed a template-modeling approach that uses level sets for classi-
fication. They achieved a sensitivity of 93.3% with an FP rate of 3.4% for a database 
of thin-slice screening LDCT scans of 16 patients with 119 nodules and 34 normal 
patients. Ge et  al. [130] incorporated 3D gradient field descriptors and ellipsoid 
features in LDA for classification. They employed Wilks’ lambda stepwise feature 
selection for selecting features before the LDA classification. They achieved a sen-
sitivity of 80% with 14.7 FPs per case for a database of 82 thin-slice CT scans of 56 
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patients with 116 solid nodules in a leave-one-patient-out test. Matsumoto et  al. 
[131] employed LDA with eight features for classification. They achieved a sensi-
tivity of 90% with 64.1 FPs per case for a database of thick-slice diagnostic CT 
scans of five patients with 50 nodules in a leave-one-out test.

Yuan et al. [132] tested a commercially available CADe system (ImageChecker 
CT, LN-1000, by R2 Technology, Sunnyvale, CA; Hologic now). They achieved a 
sensitivity of 73% with 3.2 FPs per case for a database of thin-slice (1.25 mm) CT 
scans of 150 patients with 628 nodules in an independent test. Pu et al. [133] devel-
oped a scoring method based on the similarity distance of medial axis-like shapes 
for classification. They achieved a sensitivity of 81.5% with 6.5 FPs per case for a 
database of thin-slice screening CT scans of 52 patients with 184 nodules, including 
16 non-solid nodules. Retico et al. [134] used a voxel-based neural approach (i.e., a 
class of the MTANN approach) with pixel values in a subvolume as input for clas-
sification. They obtained sensitivities of 80–85% with 10–13 FPs per case for a 
database of thin-slice screening CT scans of 39 patients with 102 nodules. Ye et al. 
[54] used a rule-based scheme followed by a weighted SVM for classification. They 
achieved a sensitivity of 90.2% with 8.2 FPs per case for a database of thin-slice 
screening CT scans of 54 patients with 118 nodules including 17 non-solid nodules 
in an independent test. Golosio et al. [135] used a fixed-topology ANN for classifi-
cation, and they evaluated their CADe scheme with a publicly available database 
from the Lung Image Database Consortium (LIDC) [136]. They achieved a sensitiv-
ity of 79% with 4 FPs per case for a database of thin-slice CT scans of 83 patients 
with 148 nodules that one radiologist detected from an LIDC database in an inde-
pendent test.

Murphy et al. [137] used a k-nearest-neighbor classifier with features selected 
from 135 features for classification. They achieved a sensitivity of 80 with 4.2 FPs 
per case for a large database of thin-slice screening CT scans of 813 patients with 
1525 nodules in an independent test. Tan et al. [138] developed a feature-selective 
classifier based on a genetic algorithm and ANNs for classification. They achieved 
a sensitivity of 87.5% with 4 FPs per case for a database of thin-slice CT scans of 
125 patients with 80 nodules that four radiologists agreed from the LIDC database 
in an independent test. Messay et al. [139] developed a sequential forward selection 
process for selecting the optimum features for LDA and quadratic discriminant 
analysis (QDA). They obtained a sensitivity of 83% with 3 FPs per case for a data-
base of thin-slice CT scans of 84 patients with 143 nodules from the LIDC database 
in a sevenfold cross-validation test. Riccardi et al. [140] used a heuristic approach 
based on geometric features, followed by an SVM for classification. They achieved 
a sensitivity of 71% with 6.5 FPs per case for a database of thin-slice CT scans of 
154 patients with 117 nodules that four radiologists agreed on from the LIDC data-
base in a twofold cross-validation test.

Thus, various approaches have been proposed for CADe schemes for lung nod-
ules in CT. Sensitivities for the detection of lung nodules in CT range from 70% to 
95%, with from a few to 70 FPs per case. Major sources of FPs are various-sized 
lung vessels. Major sources of false negatives are ground glass nodules, nodules 
attached to vessels, and nodules attached to the lung wall (i.e., juxtapleural 
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nodules). Ground glass nodules are difficult to detect, because they are subtle, of 
low- contrast, and have ill-defined boundaries. The MTANN approach was able to 
enhance and thus detect ground-glass nodules [73]. The cause of false negatives due 
to vessel-attached nodules and juxtapleural nodules is mis-segmentation and thus 
inaccurate feature calculation. Because the MTANN approach does not require seg-
mentation or feature calculation, it was able to detect such nodules [73].

9.4.2.2  Illustration of a CADe Scheme
Figure 9.4a illustrates an axial slice of a CT scan of the lungs with a lung cancer. 
The lung cancer on the CT image is the target that we want to detect with a CADe 
scheme. Figure 9.4b illustrates lung segmentation by simple thresholding followed 
by mathematical morphology filtering.

Suzuki [11] developed a supervised “lesion enhancement” filter based on an 
MTANN for enhancing lesions and suppressing non-lesions in medical images. 
Figure 9.5b illustrates the enhancement of a lung nodule in a CT image by means of 
a trained MTANN lesion-enhancement filter for the original axial CT slice shown in 
Fig. 9.5a. In the output image, the lung nodule in the original CT image is enhanced, 
while normal structures such as lung vessels are suppressed substantially. Figure 9.5c 
shows the detection and segmentation result for the lung nodule by using simple 
thresholding followed by the removal of small regions. After thresholding, 
connected- component labeling [79, 84, 86] was performed to calculate the area of 
each isolated region (i.e., connected component). By removing small regions, the 
lung nodule was detected correctly with no FP detection. By use of the MTANN 
lesion-enhancement filter, detection and segmentation of lung nodules can be real-
ized in an end-to-end fashion.

To reduce remaining FPs, Suzuki et  al. developed an FP reduction technique 
based on MTANNs [73]. The architecture of the MTANN for FP reduction is shown 
in Fig. 9.6. For enhancement of nodules (i.e., true positives) and suppression of non- 
nodules (i.e., FPs) on CT images, the teaching image contains a distribution of val-
ues that represent the “likelihood of being a nodule.” For example, the teaching 
volume contains a 3D Gaussian distribution with standard deviation σT for a lesion 

a b

Fig. 9.4 (a) Axial slice of a CT scan of the lungs with a lung cancer (indicated by an arrow) and 
(b) a lung segmentation result
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and zero (i.e., completely dark) for non-lesions, as illustrated in Fig. 9.6. This dis-
tribution represents the “likelihood of being a lesion”:
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A scoring method is used for combining output voxels from the trained MTANNs, 
as illustrated in Fig.  9.7. A score for a given region-of-interest (ROI) from the 
MTANN is defined as
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a b c

Fig. 9.5 Lesion enhancement by means of a supervised MTANN lesion-enhancement filter. (a) 
Original axial CT slice with a lung nodule. (b) Output image of the trained MTANN nodule- 
enhancement filter. In the output image (b), the lung nodule in the original CT image (a) is 
enhanced, whereas normal structures such as lung vessels are suppressed substantially. (c) 
Detection and segmentation of the nodule by using thresholding followed by removal of 
small regions
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is a 3D Gaussian weighting function with standard deviation σ, and with its 
center corresponding to the center of the volume for evaluation, RE; and O is the 
output image of the trained MTANN, where its center corresponds to the center 
of RE. The use of the 3D Gaussian weighting function allows us to combine the 

Teaching image 
for a lesion

Lesion
(e.g., nodule)

Non-lesion 
(e.g., vessel)

Teaching image for 
a non-lesion

Distribution for a 

likelihood of being 

a lesion 

MTANN

Early 

Deep 

Learning 

Model

Fig. 9.6 Architecture of an MTANN for FP reduction. The teaching image for a lesion contains a 
Gaussian distribution; that for a non-lesion contains zero (completely dark). After the training, the 
MTANN expects to enhance lesions and suppress non-lesions

Lesion
(e.g., nodule)

Non-lesion
(e.g., vessel)

Output image

2D/3D weighting 
function (e.g., 

Gaussian function)

Single score for 
each candidate

Fig. 9.7 Scoring method 
for combining pixel-based 
output responses from the 
trained MTANN into a 
single score for each ROI
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responses (outputs) of a trained MTANN as a 3D distribution. A 3D Gaussian 
function is used for scoring, because the output of a trained MTANN is expected 
to be similar to the 3D Gaussian distribution used in the teaching images. This 
score represents the weighted sum of the estimates for the likelihood that the 
ROI (lesion candidate) contains a lesion near the center, i.e., a higher score 
would indicate a lesion, and a lower score would indicate a non-lesion. 
Thresholding is then performed on the scores for distinction between lesions 
and non-lesions.

The MTANNs were trained to enhance lung nodules and suppress various types 
of FPs (i.e., non-nodules) such as lung vessels. Figure 9.8 shows the results of the 
enhancement of various lung nodules such as non-solid (ground-glass), part-solid 
(mixed-ground-glass), and solid nodules (a) and those of the suppression of various- 
sized lung vessels (b). Figure  9.9 shows a free-response receiver operating 

Input images Output images

Non-solid
nodules

Part-solid
nodules

Solid
nodules

Peripheral
vessels

Large vessels
in the hilum

Vessels with
some opacities

Medium
vessels

Fig. 9.8 Enhancement of lung nodules and suppression of FPs (i.e., lung vessels) by use of 
MTANNs for FP reduction. Once lung nodules are enhanced, and FPs are suppressed, FPs can be 
distinguished from lung nodules by use of scores obtained from the output images
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characteristic (FROC) curve [141], indicating the performance of the trained 
MTANNs in the CADe scheme. The performance of well-known CNNs (including 
the AlexNet, the LeNet, a relatively deep CNN, a shallow CNN, and a fine-tuned 
AlexNet which used to transfer learning from a computer-vision-trained AlexNet) 
and MTANNs was compared extensively [142]. Comparison experiments were 
done for detection of lung nodules in CT with the same databases. The experiments 
demonstrated that the performance of MTANNs was substantially higher than that 
of the best-performing CNN under the same condition, as demonstrated in Fig. 9.9. 
The MTANNs generated 2.7 FPs per patient at 100% sensitivity, which was signifi-
cantly (p < 0.05) lower than that for the best-performing CNN model (Fine-tuned 
AlexNet), with 22.7 FPs per patient at the same level of sensitivity.

Figure 9.10 shows an example of CADe outputs on a CT image of the lungs. A 
CADe scheme detected a lung nodule correctly with one FP which was a branch of 
the lung vessels.

9.4.3  CADe of Lung Nodules in CXR

Chest radiograph (CXR) is the most commonly used imaging examination for chest 
diseases because it is the most cost-effective, routinely available, and dose-effective 
diagnostic examination [143, 144]. Because CXRs are widely used, improvements 
in the detection of lung nodules in CXRs could have a significant impact on early 
detection of lung cancer. Studies have shown that, however, 30% of nodules in 
CXRs were missed by radiologists in which nodules were visible in retrospect. 
Therefore, CADe schemes [12, 14] for nodules in CXRs have been investigated for 
assisting radiologists in improving their sensitivity. A wide variety of approaches in 
CADe schemes for nodule detection in CXRs have been developed. Giger et  al. 
developed a difference-image technique to reduce complex anatomic background 
structures while enhancing nodule-like structures for initial nodule candidate detec-
tion [12, 145]. Lo et al. used a technique similar to the difference-image technique 
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to create nodule-enhanced images, which were then processed by a feature- 
extraction technique based on edge detection, gray-level thresholding, and sphere 
profile matching [146, 147]. Then a convolution neural network was employed in 
the classification step. Penedo et al. then improved the performance of the scheme 
by incorporating two-level ANNs that employed cross-correlation teaching images 
and input images in the curvature peak space [148]. Coppini et  al. developed a 
CADe scheme based on biologically inspired ANNs with fuzzy coding [49]. 
Shiraishi et al. incorporated a localized searching method based on anatomical clas-
sification and automated techniques for the parameter setting of three types of 
ANNs into a CADe scheme [51].

Studies showed that 82–95% of the missed lung cancers in CXR were partly 
obscured by overlying bones such as ribs and/or a clavicle [149, 150]. To address 
this issue, Suzuki et al. [76, 151] developed a multiresolution MTANN for the sepa-
ration of bones such as ribs and clavicles from soft tissue in CXRs. They employed 
multiresolution decomposition/composition techniques [152, 153] to decompose an 
original high-resolution image into different-resolution images. First, one obtains a 
medium-resolution image gM(x,y) from an original high-resolution image gH(x,y) by 
performing down-sampling with averaging, i.e., four pixels in the original image are 
replaced by a pixel having the mean value for the four pixel values, represented by.
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where R22 is a 2-by-2-pixel region. The medium-resolution image is enlarged by 
up-sampling with pixel substitution, i.e., a pixel in the medium-resolution image is 
replaced by four pixels with the same pixel value, as follows:

 
g x y g x yM
U
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Then, a high-resolution difference image dH(x,y) is obtained by subtraction of the 
enlarged medium-resolution image from the high-resolution image, represented by

Fig. 9.10 CADe outputs 
(indicated by circles) on an 
axial CT slice of the lungs. 
A lung nodule (indicated 
by an arrow) was detected 
correctly by a CADe 
scheme with one FP 
detection (branch of lung 
vessels) on the right
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These procedures are performed repeatedly, producing further lower-resolution 
images. Thus, multiresolution images having various frequencies are obtained by 
use of the multiresolution decomposition technique.

An important property of this technique is that exactly the same original- 
resolution image gH(x,y) can be obtained from the multi-resolution images, dH(x,y) 
and gM(x,y), by performing the inverse procedures, called a multi-resolution compo-
sition technique, as follows:

 
g x y g x y d x yH M H, / , / , .( ) = ( ) + ( )2 2  (9.10)

Therefore, we can process multiresolution images independently instead of pro-
cessing original high-resolution images directly; i.e., with these techniques, the pro-
cessed original high-resolution image can be obtained by composing of the 
processed multiresolution images. Each of multiple MTANNs only needs to support 
a limited spatial frequency range in each resolution image instead of the entire spa-
tial frequencies in the original image.

First, input CXRs and the corresponding teaching bone images are decomposed 
into sets of different-resolution images, and then these sets of images are used for 
training three MTANNs in the multiresolution MTANN. Each MTANN is an expert 
for a certain resolution, i.e., a low-resolution MTANN is in charge of low-frequency 
components of ribs, a medium-resolution MTANN is for medium-frequency com-
ponents, and a high-resolution MTANN for high-frequency components. Each reso-
lution MTANN is trained independently with the corresponding resolution images. 
After training, the MTANN produce different-resolution images, and then these 
images are composed to provide a complete high-resolution image by use of the 
multiresolution composition technique. The complete high-resolution image is 
expected to be similar to the teaching bone image; therefore, the multiresolution 
MTANN would provide a “bone-image-like” image in which ribs and clavicles are 
separated from soft tissues. Chen and Suzuki [111, 112] improved the performance 
of the MTANN “virtual” dual-energy chest radiography by means of anatomically 
specific multiple MTANNs. Zarshenas and Suzuki improved the MTANN by incor-
porating the wavelet transform [154]. Figure 9.11 illustrates suppression of bones 
from soft tissue in CXR by using the MTANNs [111].

Suzuki et al. developed an FP reduction technique based on MTANNs in a CADe 
scheme of nodules in CXR.  They removed 68% of the FPs that had not been 
removed by feature-based ML, and the performance of the CADe scheme was sub-
stantially improved from 4.5 to 1.4 FPs per image, while maintaining the original 
sensitivity of 81.3%.

Chen and Suzuki developed a CADe scheme of lung nodules in CXRs based on 
feature-based SVM [155]. They improved the performance by using the MTANN 
virtual dual-energy imaging [110]. They improved the performance substantially 
from the original sensitivity of 79% with 5 FPs per image to a sensitivity of 85% 
with the same FP rate. Figure 9.12 illustrates computer outputs from their CADe 
scheme without and with the MTANN virtual dual-energy imaging [110].
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They compared the performance of their CADe scheme with that of an FDA- 
approved CADe product with the same database. Their CADe scheme achieved a 
sensitivity of 81% with 2.0 FPs per image, whereas the FDA-approved product 
achieved a substantially inferior performance that had a sensitivity of 67% at the 
same FP rate. They also compared the performance with other CADe schemes in 
literature by using the same publicly available database of the JSRT [156]. Wei et al. 
reported that their CAD scheme achieved a sensitivity of 80% with 5.4 FPs per 
image. Hardie et al. reported that their scheme marked 80% of nodules with 5 FPs 

a b

Fig. 9.11 Suppression of bones such as ribs and clavicles from soft tissue in CXR. (a) Original 
CXR with a lung nodule (indicated by an arrow). (b) Bone suppression imaging (or “virtual” dual- 
energy radiography) result by means of a multiresolution MTANN

a b

Fig. 9.12 Illustration of the improvement in nodule detection by CADe scheme with our VDE 
technology. CADe marks are indicated by circles. (a) False negatives (arrow) and false positives of 
the original CADe scheme. (b) True positives (arrow) and false positives of the VDE-based CADe 
scheme with the VDE technology
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per image [50]. The performance of Chen Suzuki CADe scheme was substantially 
higher than that of Hardie’s CADe scheme, i.e., it achieved a sensitivity of 78% at 
an FP rate of 2.0 per image, whereas Hardie’s CADe scheme achieved a sensitivity 
of 63% at the FP rate.

9.5  CADe in Colonic Imaging

9.5.1  Colonic Imaging for Colorectal Cancer Detection

Colorectal cancer is the second leading cause of cancer deaths in the United States 
[157]. Evidence suggests that early detection and removal of polyps (i.e., precursors 
of colorectal cancer) can reduce the incidence of colorectal cancer [158, 159]. 
Consequently, the American Cancer Society (ACS) recommends that an individual 
who is at average risk for developing colorectal cancer, beginning at the age of 
50 years, should have colorectal cancer screening with examinations including opti-
cal colonoscopy and CTC. CTC (or virtual colonoscopy) is a technique for detect-
ing colorectal neoplasms by using CT scans of the colon [160]. The diagnostic 
performance of CTC in detecting polyps, however, varies by experience of radiolo-
gists, hospitals, and protocols [161]. Therefore, CADe of polyps has been investi-
gated to address this issue with CTC [162–164].

9.5.2  Overview of CADe of Polyps in CTC

CADe has the potential to (a) increase radiologists’ sensitivity in the detection of 
polyps, (b) decrease reader variability, and (c) reduce radiologists’ reading time 
when CADe is used during the primary read [163, 164]. A number of researchers 
have developed CADe schemes for the detection of polyps in CTC [62, 165–170]. 
Figure 9.13 shows an example of a CADe output for detection of polyps in CTC. A 
CADe scheme detected the polyp correctly.

In 2000, Summers et  al. [21] developed a CADe scheme for the detection of 
polyps in CTC based on curvature analysis. In 2001, Yoshida and Nappi [62] devel-
oped a CADe scheme based on curvature analysis called a shape index. In 2001, 
Gokturk et al. [171] employed an SVM with histogram input that is used as a shape 
signature for classification. Näppi and Yoshida [172] developed a CADe scheme 
based on LDA or QDA with 54 volumetric features (9 statistics of 6 features). Acar 
et al. [173] used edge-displacement fields and QDA for classification. Jerebko et al. 
[60] used a multilayer perceptron to classify polyp candidates in their CADe scheme 
and improved the performance by incorporating a committee of multilayer percep-
trons [174] and a committee of SVMs [175]. Wang et al. [176] developed a classifi-
cation method based on LDA with internal features (geometric, morphologic, and 
textural) of polyps.

Suzuki et al. [23] developed a 3D MTANN by extending the structure of a 2D 
MTANN [17] to process 3D volume data in CTC. Their CADe scheme was based 
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on a Bayesian ANN with texture and geometric features, followed by 3D MTANNs. 
They removed FPs due to rectal tubes by using a single 3D MTANN [23] and mul-
tiple sources of FPs by developing and using a mixture of expert 3D MTANNs [22].

Li et al. [177] developed a classification method based on an SVM classifier with 
wavelet-based features. Wang et al. [61] improved the SVM performance by using 
nonlinear dimensionality reduction (i.e., a diffusion map and locally linear embed-
ding). Yao et al. [178] employed a topographic height map for calculating features 
for an SVM classifier.

Suzuki et  al. [106] tested a CADe scheme based on a Bayesian ANN and 
MTANNs. They used CTC data of 24 patients, including 23 polyps (6–25 mm) and 
a mass (35 mm), that had been “missed” by radiologists [179] in a multicenter clini-
cal trial [180]. They achieved a by-polyp (by-patient) sensitivity of 96.4% (100%) 
with 1.1 FPs/patient in a leave-one-lesion-out cross-validation test of the classifica-
tion part. Suzuki et  al. [107, 181] also improved the efficiency of the MTANN 
approach by incorporating principal-component analysis-based and Laplacian 
eigenmap-based dimension reduction techniques. Xu and Suzuki [108] showed that 
other nonlinear regression models such as support vector and nonlinear Gaussian 
process regression models instead of the ANN regression model could be used as 
the core model in the MTANN framework.

Zhou et al. [182] developed projection features for an SVM classifier. Wang et al. 
[183] improved the performance of a CAD scheme by adding statistical curvature 
features in multiple-kernel learning. They obtained a sensitivity of 83% with 5 FPs/
patient in a leave-one-out cross-validation test of the classification part.

Thus, various ML approaches have been proposed in CADe schemes for polyps 
in CTC, which include LDA, QDA, an SVM, ANNs, and a Bayesian ANN.

Existing CADe schemes tend to miss superficially elevated neoplasms (often 
called flat lesions) [28, 184]. Suzuki et al. developed a CADe scheme for the detec-
tion of superficially elevated neoplasms [185]. Detection of superficially elevated 
neoplasms is very important, because they are histologically aggressive, and because 
they are often missed by radiologists in CTC as well as by gastroenterologists in 
optical colonoscopy.

Endoluminal viewAxial slice Colon view

Fig. 9.13 CADe output (indicated by an arrow) for the detection of polyps in an axial slice, an 
endoluminal view, and a 3D colon view in CTC. A polyp (indicated by an arrow) was detected 
correctly by a CADe scheme
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9.6  Summary

In this chapter, ML techniques and early deep learning models used in CAD schemes 
for detection of lung nodules in CXR and thoracic CT and those for detection of 
polyps in CTC are described. Before deep learning was introduced, feature-based 
(segmented-object-based) ML (classifiers) had been dominant and used in one of 
steps in a CADe scheme. Deep learning is an end-to-end ML paradigm which skips 
multiple steps in a CADe scheme. In CAD and medical imaging fields, early deep 
learning models called neural filters, neural edge enhancers, and MTANNs were 
developed for detection, classification, and image processing tasks in medical imag-
ing. MTANNs have advantages of small-sample-size training, high performance, 
stable training, and efficient training and computation over other deep learn-
ing models.
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10.1  Introduction

In recent years, there have been significant interests and efforts in the development 
of computerized methods for automatically classifying a tumor or lesion being 
malignant or benign. These methods are collectively known as computer-aided 
diagnosis (CADx), the purpose of which is to provide a second opinion to assist 
radiologists in their diagnosis of the detected tumors. Indeed, in the literature, 
CADx techniques have been studied both for various disease types and for different 
imaging modalities, ranging from CT in oncology, magnetic resonance imaging 
(MRI) for brain tumors, to mammography and ultrasound for breast cancer and 
many others. For instance, the application of CT to early lung cancer has generated 
significant interests. In a recent randomized clinical trial referred to as the NELSON 
trial with 15,822 enrolled participants [1], it was shown that low-dose CT screening 
can improve the sensitivity and specificity of lung cancer detection [2]. However, 
this situation has been more challenging in cases of head and neck cancer, where the 
combination with positron emission tomography (PET) has overcome some short-
ages of CT and revolutionized the management of this cancer [3]. On the other 
hand, MRI, which is more financially expensive but with better soft tissue discrimi-
nation and avoiding exposure to ionizing radiation, has risen in recent years in the 
diagnosis of difficult cases such as prostate [4], brain [5, 6], and breast cancers [7].
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mailto:yangyo@iit.edu
mailto:ielnaqa@med.umich.edu


206

In mammography, many CADx techniques have been developed for the classifi-
cation of suspicious breast tumors in mammogram images, including both masses 
and clustered microcalcifications (MCs). For example, in the early work [8], a three- 
layer, feed-forward neural network was trained with a back-propagation algorithm 
for mammographic lesion (including MCs and masses) interpretation. Subsequently, 
various supervised learning techniques were studied for diagnosis of MC lesions 
(e.g., [9–15]) and mass lesions (e.g., [16–20]). There also exist several laboratory 
studies which demonstrate that CADx techniques can either be more accurate than 
the human readers or help improve their diagnosis accuracy [11, 21–26].

In the rest of this chapter, we will first provide an overview of the major compo-
nents involved in the development of a CADx framework for tumor classification 
(Sect. 10.2). Afterwards, we will illustrate this framework with some examples of 
CADx techniques for breast lesions in mammograms (Sect. 10.3). In addition, we 
will also introduce the use of a visualization tool—based on the technique of multi-
dimensional scaling (MDS)—for exploring the similarity among a set of tumors 
(Sect. 10.4). Such a tool potentially can be useful for one to compare a case under 
consideration against some similar, known cases in a reference library. We will also 
discuss some issues and challenges in the development and application of CADx 
techniques (Sect. 10.5).

10.2  Overview of Classification Framework

When in operation, a CADx framework for tumor classification functions as fol-
lows: For a given tumor under consideration, a set of image features is first com-
puted from the tumor to quantify its underlying characteristics. These features are 
mathematically represented by a vector x in an n-dimensional space Rn. Afterward, 
a mathematical function f(x) is applied to the feature vector x, the value of which is 
used to reflect the likelihood that the tumor is either malignant or benign. The func-
tion f(x) is called the decision function or the classifier function.

The development of a CADx framework involves the following key components: 
(1) determine what features x to use that are relevant for classification of the tumor, 
(2) design the classifier function f(x) that is appropriate for the task, and (3) evaluate 
the accuracy level (i.e., performance metric) of the classifier output, which is key to 
the confidence level on the “second opinion.” It is noted that with the development 
of deep neural networks in recent years, the first two components above may be 
accomplished in a so-called “end-to-end” fashion within a single representative 
learning framework using deep neural networks, for instance.

10.2.1  Perception Modeling

There have been significant improvements with respect to developing image quan-
titative imaging measures, objective image interpretations, feature extraction, and 
semantic descriptors over the past decades [27, 28]. However, some major 
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difficulties still remain pertaining to CADx applications. First, it is understood that 
quantitative measures can vary with the different aspects of perceptual similarity of 
images by radiologists; the selection of an appropriate similarity measure thus 
becomes problem-dependent. Second, the relation between the low-level visual fea-
tures and the high-level expert human interpretation of similarity is not well defined 
when comparing two images; it is thus not exactly clear what features or combina-
tion of them are relevant for such judgment [29, 30]. We have been developing 
perceptual similarity metrics for application in content-based image retrieval 
(CBIR) of mammogram images [31]. In this approach, the notion of similarity is 
modeled as a nonlinear function of the image space (features) in a pair of mammo-
gram images containing lesions of interest, e.g., microcalcification clusters (MCCs). 
If we let vectors u and v denote the features of two MCCs at issue, the following 
regression model is used to determine their similarity coefficient (SC):

 
SC fu v u v, ,� � � � � �� ,  (10.1)

where f(u, v) is a function determined using a machine learning approach, which we 
choose to be support vector machine (SVM) learning [32], and ζ is the modeling 
error. The similarity function f(u, v) in Eq. (10.1) is trained using data samples col-
lected in an observer study.

10.2.2  Feature Extraction for Tumor Quantification

The purpose of feature extraction is to describe the content of a tumor under consid-
eration by a set of quantitative descriptors, called features, denoted by vector x. 
Conceptually, these features should be relevant to the disease condition of the tumor. 
For example, they may be used to quantify the size of the tumor, the geometric 
shape of the tumor, the density of the tissue, etc., depending on the tumor type and 
specific application.

In the literature, there have been many types of features studied for classification 
of benign and malignant tumors. For example, in [33], effective thickness and effec-
tive volume were defined on the physical properties of MCs in mammogram images 
and were demonstrated to be useful for diagnosis. In [34], image intensity and tex-
ture features were extracted from post-contrast T1-weighted MR images and were 
shown to be helpful for brain tumor classification. In [35], wavelet features were 
compared with Haralick features [36] for MC classification.

While the reported features are many, they can be divided into two broad catego-
ries: (1) boundary-based features, and (2) region-based features. Boundary-based 
features are used to describe the properties of the geometric boundary of a tumor. 
They include, for example, the perimeter, Fourier descriptors, and boundary 
moments [37]. In contrast, region-based features are derived from within a tumor 
region, which include the shape, texture, or the frequency domain information of the 
tumor. Some examples of region-based features are the tumor size, image moment 
features [37], wavelet-based features [35], and texture features [34].
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To ensure good classification performance, the features extracted from a tumor 
are desired to have certain properties pertinent to the application. For example, a 
common requirement is that the features should be shift invariant to any translation 
or rotation in a tumor image. Other considerations in extracting or designing quan-
titative features include the effects of the image resolution and gray-level quantiza-
tion used for the image. The image resolution can affect those features related to the 
size of a tumor, such as its area and perimeter. The quantization level in an image 
can affect those features related to the image intensity, such as image moments and 
features derived from the gray-level co-occurrence matrix (GLCM) [34]. Therefore, 
prior to feature extraction, the tumor images need to be preprocessed properly in 
order to avoid any discrepancy in resolution and quantization.

With a great number of features available, as described above, an important task 
in a CADx framework is how to determine a set of discriminative features in a 
tumor classification problem. These features are desired to have good differentiat-
ing power between benign and malignant tumors. One approach is to exploit the 
working knowledge of the clinicians and select those features that are closely asso-
ciated with what the clinicians use in their diagnosis of the lesions [11]. For exam-
ple, for MC lesions, the size and shape of the MCs and their spatial distribution are 
all known to be important, because the MCs tend to be more irregular and have a 
bigger cluster in a malignant lesion [15]. Alternatively, to determine the most salient 
features for use in the classification, one may employ a systematic feature selection 
procedure during the training stage of the classifier. The commonly used feature 
selection procedures in the literature include the filter algorithm [38], wrapper algo-
rithm [39], and embedded algorithm [40].

10.2.3  Design of Decision Function Using Machine Learning

The problem of classifying benign or malignant tumors is a classical two-class clas-
sification problem, with benign tumors being one class and malignant ones being 
the other class. For a given tumor characterized by its feature vector x, a decision 
function f(x) is designed to determine which class (malignant or benign), x belongs 
to. Naturally, a fundamental problem is how to design the decision function for a 
given tumor type. A common approach to this problem is to apply supervised learn-
ing, in which a pattern classifier is first trained on a set of known cases, denoted as 
{(xi, yi), i = 1, …, N}, where a training sample is described by its feature vector xi, 
and yi is its known class-label (1 for malignant tumor and − 1 for benign tumor). 
Once trained, the classifier is applied subsequently to classify other cases (unseen 
during training).

Broadly speaking, depending on its mathematical form, the decision function 
f(x) is categorized into linear and nonlinear classifiers. A linear classifier is repre-
sented as

 
f bTx w x� � � �  (10.2)
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where w is the discriminant vector and b is the bias, which are parameters deter-
mined from the training samples. In contrast, a nonlinear classifier f(x) has a more 
complex mathematical form and is no longer a linear function in terms of the feature 
variables x. One such example is the feed-forward neural network, in which (non-
linear) sigmoid activation functions are used at the individual nodes within the 
network.

Because of their simpler form, linear classifiers are easier to train and less prone 
to over-fitting compared to their nonlinear counterpart. Moreover, it is often easier 
to examine and interpret the relationship between the classifier output and the indi-
vidual feature variables in a linear classifier than that in a nonlinear one. Thus, linear 
classifiers can be favored for certain applications. On the other hand, because of 
their more complex form, nonlinear classifiers can be more versatile and achieve 
better performance than linear ones when the underlying decision surface between 
the two classes is inherently nonlinear in a given problem.

Regardless of their specific form, classifier functions typically involve a number 
of parameters, which need to be determined before they can be applied to classify-
ing an unknown case. There have been many different algorithms designed for 
determining these parameters from a set of training samples, which are collectively 
known as supervised machine learning algorithms. These are discussed in detail in 
Chap. 3 and reviewed here briefly.

Consider, for example, the case of linear classifiers in Eq. 10.2. The parameters 
w and b can be determined according to the following different optimum principles: 
(1) logistic regression [41], in which the log-likelihood function of the training data 
samples is maximized under a logistic probability model; (2) linear discriminant 
analysis (LDA) [42], in which the optimal decision boundary is determined under 
the assumption of multivariate Gaussian distributions for the data samples from the 
two classes; and (3) support vector machine (SVM) [43], in which the parameters 
are designed to achieve the maximum separation between the two classes (among 
the training samples).

Similarly, there also exist many methods for designing nonlinear classifiers. One 
popular type of nonlinear classifiers is the kernel-based methods [44]. In a kernel- 
based method, a so-called kernel trick is used to first map the input vector x into a 
higher-dimensional space via a nonlinear mapping; afterward, a linear classifier is 
applied in this mapped space, which in the end is a nonlinear classifier in the origi-
nal feature space. One such example is the popular nonlinear SVM classifier. Other 
kernel-based methods include kernel Fisher discriminant (KFD), kernel principle 
component analysis (KPCA), and relevance vector machine (RVM) [45].

Another type of commonly used nonlinear CADx classifiers is the committee- 
based methods. These methods are based on the idea of systematically aggregating 
the output of a series of individual weak classifiers to form a (more powerful) deci-
sion function. Adaboost [46] and random forests [47] are well-known examples of 
such committee-based methods. For example, in Adaboost, the training set is 
applied successively to obtain a sequence of weak classifiers; the output of each 
weak classifier is adjusted by a weight factor according to its classification error on 
the training set to form an aggregated decision function [46] while random forests 
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using a bagging (averaging) approach to develop the committee classifier [47]. 
More recently, gradient boosting methods seemed to provide superior performance 
to other methods in this category [48].

10.2.4  Deep Learning Methods

Deep learning is a special family of machine learning methods generally based on 
artificial neural networks. A popular deep learning architecture in medical imaging 
is deep convolutional neural network (CNN). Details on deep learning can be found 
in Chap. 4. For example, in the context of CADx, in [13], it was used to discriminate 
malignant and benign MC lesions in mammography, and in [16], it was applied for 
mass lesion diagnosis. By design, a CNN is typically comprised of a cascade of 
multiple convolutional, batch normalization, pooling, fully connected layers, and 
other layers, which are described as follows.

Convolutional layers are used to extract the image features at varying spatial 
scales in an input image. Within a convolutional layer, a set of filters is used to oper-
ate on the input, from which the output is fed into a subsequent layer. The output of 
each filter is called a feature map. Specifically, for a given layer, let xk denote its k-th 
input feature map, and hj

k  denote its corresponding convolutional filter for output 
feature map j. Then, the output can be represented as

 
y x hj
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(10.3)

where ∗ denotes the convolution operation, K is the number of channels in the input 
feature map, b is a bias constant, and f(⋅) is an activation function, which is a non-
linear transformation from the input to the output. The recent development of deep 
learning is partly facilitated by the design of activation functions to address the 
problem of saturation associated with the traditional sigmoid function. Some of the 
commonly used activation functions are as follows:

 1. Rectified linear unit (ReLU)
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 2. Leaky rectified linear unit (Leaky ReLU)
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 3. Parametric rectified linear unit (PReLU)
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for

0

0  
(10.6)

Batch normalization layers are used to deal with the issue of internal covariate 
shifts during training, a phenomenon that the distribution of a layer’s input varies 
with the change in parameters of its preceding layers. Batch normalization has been 
shown to speed up learning and improve classification performance. It is achieved 
through a normalization step which controls the mean and variance values of each 
layer’s input. For each feature in the feature maps z-score normalization is applied 
such that each resulting feature has zero mean and unit standard deviation. 
Mathematically, let xk

i  be the k-th feature of the i-th training sample in a mini-batch, 
then the normalized output can be represented as

 
y Z xk
i

k k
i

k� � � �� �  (10.7)

where γk and βk are parameters to restore the representation power of the network, 
which are learned during training, and Z xk

i� �  denotes the z-score normalization of 
k-th feature in the feature map, in which the mean and standard deviation are esti-
mated from all the samples in the mini-batch during training.

Pooling layers are used to summarize the features of neighboring regions in a 
feature map by reducing the spatial dimensions of the data. A pooling operation can 
be done either locally or globally. A commonly used local pooling is to combine 
data in small regions of 2 × 2 or 3 × 3. Global pooling acts on the entire spatial 
dimension of a feature map. During pooling, the max or average of a region can be 
computed. Max pooling calculates the maximum of its input features, and average 
pooling uses the average of its input features.

Fully connected layers are used to connect each neuron from one layer to every 
neuron in another layer, just as in a traditional feed-forward neural network. Fully 
connected layers are usually used as the last layers in a deep neural network to 
achieve the classification task.

While deep learning methods have found great success in many applications, a 
major challenge is the need for acquiring a large number of samples for training. 
Transfer learning has been employed to deal with this problem. Transfer learning is 
a technique of creating high-performance classifiers with data more easily available 
from different application domains [49]. For example, in [50], it was used to clas-
sify pulmonary nodules of thoracic CT images with the classic LeNet-5 model. In 
[51], it was used for brain tumor classification with the GoogLeNet.

Another approach to deal with the issue of insufficient data samples in training is 
to combine both deep learning and traditional machine learning techniques for clas-
sification. It typically uses either pretrained CNN or unsupervised deep learning 
models for feature extraction and then applies machine learning methods for clas-
sification. For example, in [52], a pretrained CNN was used to extract different 
levels of features (along with handcrafted features) for classification by SVM. In 
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[53], a variational autoencoder was employed for feature learning. In [54], a CNN 
pretrained on the ImageNet dataset was used for feature extraction and an SVM was 
used to predict the likelihood of a breast lesion detected on mammograms being 
malignant.

10.2.5  CADx Classifier Training and Performance Evaluation

Conceptually, a CADx classifier should be trained and evaluated by using the fol-
lowing three sets of data samples: a training set, a validation set, and a testing set. 
The training set is used to obtain the model parameters of a classifier (such as w and 
b in the linear classifier in Eq. 10.2). The validation set is usually independent from 
the training set and is used to determine the tuning parameters of a classifier if it has 
any. For example, in kernel SVM, one may need to decide the type of the kernel 
function to use. Finally, the testing set is used to evaluate the performance of the 
resulting classifier. It must be independent from both the training and validation sets 
in order to avoid any potential bias.

Ideally, when the number of available data samples is large enough, the training, 
validation, and testing sets in the above should be kept to be mutually exclusive. 
However, in practice, the data samples are often scarce, making it impossible to 
obtain independent training, validation, and testing sets, which is often true when 
clinical cases are used. To deal with this difficulty, a k-fold cross-validation proce-
dure is often used instead. The procedure works as follows: first, the available n data 
samples are divided randomly into k roughly equal-sized subsets; subsequently, 
each of the k subsets is held out in turn for testing while the rest (k − 1) subsets are 
used together for training. In the end, the performance is averaged over the k held- 
out testing subsets to obtain the overall performance. A special case of the k-fold 
cross-validation procedure is when k = n, which is also called a leave-one-out pro-
cedure (LOO). It is known that a smaller k yields a lower variance but also a larger 
bias in the estimated performance. In practice, k = 5 or 10 is often used as a good 
compromise in cross validation [55, 56].

When there are (hyper)-parameters needed to be tuned in a classifier model, a 
double loop (nested) cross-validation procedure [57] can be applied to avoid any 
potential bias. A double-loop cross-validation procedure has a nested structure of 
two loops (the inner and outer loops). The outer loop is the same as the standard 
k-fold cross validation above, which is used to evaluate the performance of the clas-
sifier. The inner loop is to further perform a standard k′-fold cross-validation using 
only the training portion of samples in each iteration of the outer loop, which is used 
to select the tuning parameters.

For evaluating the performance of a CADx classifier, a receiver-operating char-
acteristic (ROC) analysis is now routinely used. An ROC curve is a plot of the clas-
sification sensitivity (i.e., true-positive fraction) as the ordinate versus the specificity 
(i.e., false-positive fraction) as the abscissa. For a given classifier, an ROC curve is 
obtained by continuously varying the threshold associated with its decision function 
over its operating range. As a summary measure of overall diagnostic performance, 
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the area under an ROC curve (denoted by AUC) is often used. A larger AUC value 
means better classification performance.

10.3  Application Examples in Mammography

10.3.1  Mammography

Mammography is an imaging procedure in which low-energy X-ray images of the 
breast are taken. Typically, they are in the order of 0.7 mSv. A mammogram can 
detect a cancerous or precancerous tumor in the breast even before the tumor is 
large enough to feel. Despite advances in imaging technology, mammography 
remains the most cost-effective strategy for early detection of breast cancer in clini-
cal practice. The sensitivity of mammography could be up to approximately 90% 
for patients without symptoms [58]. However, this sensitivity is highly dependent 
on the patient’s age, the size and conspicuity of the lesion, the hormone status of the 
tumor, the density of a woman’s breasts, and the overall image quality and the inter-
pretative skills of the radiologist [59]. Therefore, the overall sensitivity of mam-
mography could vary from 90% to 70% only [60]. Moreover, it is very difficult to 
distinguish mammographically benign lesions from malignant ones. It has been 
estimated that one third of regularly screened women experience at least one false- 
positive (benign lesions being biopsied) screening mammogram over a period of 
10 years [61]. A population-based study included about 27,394 screening mammo-
grams that were interpreted by 1067 radiologists showed that the radiologists had 
substantial variations in the false-positive rates ranging from 1.5 to 24.1% [62]. 
Unnecessary biopsy is often cited as one of the “risks” of screening mammography. 
Surgical, needle-core, and fine-needle aspiration biopsies are expensive, invasive, 
and traumatic for the patient.

10.3.2  Detection of Clustered Microcalcifications 
in Mammograms

Clustered microcalcifications (MCs) can be an important early sign of breast cancer 
in women. They are found in 30–50% of mammographically diagnosed cases. MCs 
are calcium deposits of very small dimension and appear as a group of granular 
bright spots in a mammogram (e.g., Fig. 10.1). While often seen, accurate detection 
MCs in mammograms can be difficult, because of their subtlety in appearance, vari-
ation in shape and size, and inhomogeneity in surrounding tissue. In computer- 
aided diagnosis, accurately detecting the individual MCs in a cluster is important, 
because the image features of the detected MCs are further analyzed for classifica-
tion as being benign or malignant [9, 63]. Studies have shown that the accuracy of 
detected individual MCs can impact on the CADx performance [24, 25, 64, 65].

In the literature, computerized methods have been investigated for accurate 
detection of clustered MCs. For example, in [66], a difference-of- Gaussians (DoG) 
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filter, wherein the filter consisted of two kernels of limited width parameters, was 
applied for MC detection. In [67], an SVM was adopted using a local image window 
centered at a location as input. In [68], two CNNs were considered for MC detection 
in multi- vendor mammography, in which one CNN was used to remove easy sam-
ples and another was used for classifying the survived samples; the input sample 
consisted of a local window at a detection location. In Wang et al. [69], a CNN was 
developed to detect the presence of clustered MCs in mammograms.

MC detection example using deep learning: In this section we demonstrate the 
use of a deep neural network (DNN) for MC detection [70]. We formulate MC 
detection as a two-class classification problem, wherein a classifier is employed to 

Fig. 10.1 A mammogram image (left) and its magnified view (right), where MCs are visible as 
granular bright spots

Fig. 10.2 Illustration of a context-sensitive DNN classifier architecture. It consists of two subnet-
works, one for processing the large image context window (called global subnetwork) and one for 
processing the small MC image window (called local subnetwork). A batch normalization layer 
and a nonlinearity layer are included after each Convolutional (Conv) layer, which are not shown 
in the figure for brevity
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determine whether an MC object is present (class 1) or absent (class 0) at a location 
under consideration in a mammogram image. The DNN architecture is shown in 
Fig. 10.2. It takes into account not only the local image features of an MC but also 
its surrounding image context for MC detection. Specifically, the detector network 
is formed by two subnetworks, one for extracting the local image features and one 
for learning the image features of its surrounding background. The extracted fea-
tures by the two subnetworks are combined subsequently for classifying whether an 
MC is present or not at a detection location. Consequently, the detector response is 
automatically adapted to the image background at an MC; the proposed detector is 
termed as context-sensitive DNN accordingly.

To evaluate the context-sensitive DNN detector, 300 mammograms were used 
for training, 117 for validation, and 125 for testing. Two image ROIs (500 × 500 or 
1000 × 1000 pixels) were cropped from each testing image for performance evalu-
ation, one containing clustered MCs and one without any MCs. To summarize the 
detection performance, a free-response receiver-operating characteristic (FROC) 
analysis was conducted. An FROC curve is a plot of the true-positive (TP) fraction 
of the MCs detected versus the average number of FPs per unit image region (1 cm2 
in area) with the decision threshold varied over an operating range. In the FROC 
analysis, the TP fraction was computed from the average of the TP fractions of the 
ROIs with clustered MCs, whereas the FP rate was computed from both the ROIs 
with and without any MCs. In the detector output, a detected object was treated as a 
TP when at least 40% of its area overlaps with that of a true MC or its distance to 
the center of a true MC is not larger than 0.3 mm; otherwise it was counted as an FP.

Figure 10.3 shows the FROC curves obtained by the context-sensitive DNN clas-
sifier [70], unified SVM detector [71], and a local DNN (with the local network 
only). The FROC curve of the context-sensitive DNN classifier is notably higher 
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(hence better detection performance) than those of both unified SVM and local 
DNN. In particular, with TPF at 80%, the context-sensitive DNN classifier achieved 
an FP rate of 1.03 FPs/cm2, compared to 5.69 FPs/cm2 by the unified SVM (a reduc-
tion of 81.9%) and 6.00 FPs/cm2 by the local DNN (a reduction of 82.8%).

10.3.3  Computer-Aided Diagnosis (CADx) of Microcalcification 
Lesions in Mammograms

Because of the subtlety of microcalcifications in appearance in mammogram 
images, accurate diagnosis of MC lesions as benign or malignant is a very challeng-
ing problem for radiologists. Studies show that a false-positive diagnostic imaging 
study leads to unnecessary biopsy of benign lesions, yielding a positive predictive 
value of only 20–40% [72]. There has been intensive research in the development of 
CADx techniques for clustered MCs, of which the purpose is to provide a second 
opinion to radiologists in their diagnosis to improve the performance and efficiency 
[21]. In the literature, various machine learning methods such as LDA, logistic 
regression, ANN, and SVM have been used in the development of CADx classifiers 
for clustered MCs. For example, in [73], an LDA classifier was used for classifica-
tion of benign and malignant MCs based on their visibility and shape features. This 
approach was subsequently extended to morphology and texture features in [21]. In 
[74], it was demonstrated that an ANN- based approach could improve the diagnosis 
performance of radiologists for MCs. In [15], FKD, ANN, SVM, RVM, and com-
mittee machines were explored in a comparison study, wherein the SVM was shown 
to yield improved performance over the others. Collectively, the reported research 
results demonstrate that CADx has the potential to improve the radiologists’ perfor-
mance in breast cancer diagnosis [75].

In the development of CADx techniques in the literature, various types of fea-
tures have been investigated for characterizing MC lesions [10, 19, 65, 76–78]. 
These features are defined to characterize the gray-level properties (e.g., the bright-
ness, contrast and gradient of individual MCs, the texture in the lesion region), or 
geometric properties of the MC lesions (e.g., the size and shape of the individual 
MCs, the number of MCs, the area, shape, and spatial distribution of a cluster). They 
are extracted either from the individual MCs or the entire lesion region. The features 
from individual MCs are often summarized using statistics to characterize an MC 
cluster.

CADx example: Machine learning methods for MC classification. In this sec-
tion, we demonstrate the use of two CADx classifiers for clustered MCs, one is a 
linear classifier based on logistic regression, and the other is a nonlinear SVM clas-
sifier with a RBF kernel [15]. In logistic regression, the parameters w and b in (10.2) 
are determined through maximization of the following log-likelihood function:
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where the probability term is given by
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For the nonlinear SVM classifier, it can be represented as:

 
f bTx w x� � � � � ��  (10.10)

where w is the discriminant vector, b is the bias, and Φ(x) is a nonlinear mapping 
function which is implicitly defined by a kernel function (RBF in our case).

Based on the maximum marginal criterion, the parameters w and b in Eq. (10.10) 
are determined as follows:
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For testing these classifiers, we used a dataset of 104 cases (46 malignant, 58 
benign), all containing clustered MCs. This dataset was collected at the University 
of Chicago. It contains some cases that are difficult to classify; the average classifi-
cation performance by a group of five attending radiologists on this dataset yielded 
a value of only 0.62 in the area under the ROC curve [11]. The MCs in these mam-
mograms were marked by a group of expert readers.

For this dataset, a set of eight features were extracted to characterize MC clusters 
[11]: (1) the number of MCs in the cluster, (2) the mean effective volume (area 
times effective thickness) of individual MCs, (3) the area of the cluster, (4) the cir-
cularity of the cluster, (5) the relative standard deviation of the effective thickness, 
(6) the relative standard deviation of the effective volume, (7) the mean area of 
MCs, and (8) the second highest shape-irregularity measure. These features were 
selected such that they have meanings that are closely associated with features used 
by radiologists in clinical diagnosis of MC lesions.

To evaluate the classifiers, a leave-one-out (LOO) procedure was applied to the 
104 cases, and the ROCKIT software was used to calculate the performance 
AUC.  The logistic regression classifier achieved AUC  =  0.7174. In contrast, the 
SVM achieved AUC = 0.7373. These results indicate that the classification perfor-
mance of the classifiers is far from being perfect, which illustrates the difficulty in 
diagnosis of MC lesions in mammograms.

10.3.4  Adaptive CADx Boosted with Content-Based Image 
Retrieval (CBIR)

In recent years, CBIR has been studied as a diagnostic aid in tumor classification 
[79, 80], of which the goal is to provide radiologists with examples of lesions with 
known pathology that are similar to the lesion being evaluated. A CBIR system can 
be viewed as a CADx tool to provide evidence for case-based reasoning. With 
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CBIR, the system first retrieves a set of cases similar to a query, which can be used 
to assist a decision for the query [81]. For example, in [82] and [83], the ratio of 
malignant cases among all retrieved cases was used as a prediction for the query. In 
[84], the similarity levels between the query and retrieval cases were used as weight-
ing factors for prediction.

We have been investigating an approach of using retrieved images to boost the 
classification of a CADx classifier [85–87]. In conventional CADx, a pattern classi-
fier was first trained on a set of training cases, and then applied to subsequent testing 
cases. Deviating from approach, for a given case to be classified (i.e., query), we 
first obtain a set of known cases with similar features to that of the query case from 
a reference database and use these retrieved cases to adapt the CADx classifier so as 
to improve its classification accuracy on the query case. Below we illustrate this 
approach using a linear classifier with logistic regression [85].

Assume that a baseline classifier f(x) in the form of Eq. 10.2 has been trained 
with logistic regression as in Eq. 10.8  on a set of training samples: {(xi, yi), i = 1, …, N}. 

Now, consider a query lesion x to be classified. Let xi
r

i
r

ry i N� � � �� � � �� �, , , ,1  be a set 

of Nr retrieved cases which are similar to x. In our case-adaptive approach, we use 

the retrieved samples xi
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ry i N� � � �� � � �� �, , , ,1  to adapt the classifier f(x). Specifically, 

the objective function in (10.8) is modified as
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In Eq. 10.12, the weighting factors βi are adjusted according to the similarity of 
xi

r� �  to the query x. The idea is to put more emphasis on those retrieved samples that 
are more similar to the query, with the goal of refining the decision boundary of the 
classifier in the neighborhood of the query. Indeed, the first term in Eq. 10.12 simply 
corresponds to the log-likelihood function in Eq. 10.8, while the second term can be 
viewed as a weighted likelihood of those retrieved similar samples. Intuitively, the 
retrieved samples are used to steer the pretrained classifier from Eq. 10.8 to achieve 
more emphasis in the neighborhood of the query x. Note that the objective function 
in Eq. 10.12 has the same mathematical form as that in the original optimization 
problem in Eq. 10.8, which can be solved efficiently by the method of iteratively 
reweighted least square (IRLS) [41].

In our study, we implemented the following strategy for adjusting βi according to 
the similarity level of a retrieved sample xi

r� �  to the query x:
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where αi denotes the similarity measure between xi
r� �  and x, and k > 0 is a parameter 

used to control the degree of emphasis on the retrieved samples relative to other 
training samples. The choice of the form in Eq. (10.13) is such that the weighting 
factor increases linearly with the similarity level of a retrieved case to x, with the 
most similar case among the retrieved receiving maximum weight 1  +  k, which 
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corresponds to k times more influence than the existing training samples in the 
objective function in Eq. (10.13).

As a similarity measure for retrieved cases, we used the Gaussian RBF kernel 
function:
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where γ is a scaling factor controlling the sensitivity of αi with respect to the dis-
tance between the query and a retrieved case. In our experiments, the parameter γ 
was set to the tenth percentile of the distance between every possible image pairs in 
the training set. Such a choice is out of the consideration that most of the cases in a 
database are typically not similar to each other. Those cases with a large distance 
away from query x will receive a low similarity measure consequently.

To demonstrate this approach, a set of 589 cases (331 benign, 258 malignant), all 
containing MC lesions, were extracted from the benign and cancer volumes in the 
DDSM database maintained at the University of South Florida [88]. The extracted 
mammogram images were adjusted to correspond to the same optical density and to 
have a uniform resolution of 0.05 mm/pixel. To quantify the MC lesions in these 
mammogram images, we first applied an MC detection algorithm using an SVM 
classifier [31, 89] to automatically locate the MCs in each lesion region provided by 
the dataset. To help suppress the false-positives in the detection, the images were 
first processed with the isotropic normalization technique prior to the detection 
[90]. The detected MCs were grouped into clusters.

Afterward, a set of descriptive features were computed for the clustered MCs in 
the dataset; the following nine features were used [85]: (1) area of the cluster, (2) 
compactness of the cluster, (3) density of the cluster represented by the number of 
MCs in a unit area, (4) standard deviation of the inter-distance between neighboring 
MCs, (5) number of MCs in the cluster, (6) sum of the size of all MC objects in the 
cluster, (7) mean of the average brightness in each MC object, (8) mean of the inten-
sity standard deviation in each MC object, and (9) the compactness of the second 
most irregular MC object in the cluster. These features were used to form a vector x 
for each lesion in the dataset.

To evaluate the classification performance, a subset of 120 cases (70 benign, 50 
malignant) was randomly selected from the dataset for training the baseline classi-
fier, and the remaining 469 cases were used for testing the adaptive classifier. An 
LOO procedure was applied for each testing case, for which all the remaining cases 
were used for retrieval. In Fig. 10.4, we show the performance results achieved by 
the case-adaptive classifier and the baseline classifier; for the adaptive classifier, the 
AUC value is shown with different number of retrieved cases Nr. From Fig. 10.4, it 
can be seen that the best performance (AUC = 0.7755) was obtained by the adaptive 
classifier when Nr = 20, compared to AUC  =  0.6848 for the baseline classifier 
(p-value<0.0001). The performance is also noted to deteriorate somewhat with 
increased Nr. This is because the number of similar cases for a given query is typi-
cally small due to the limited number of cases in the reference library. With large Nr, 
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some of the retrieved cases will become less similar to the query and will not help 
the classification on the query.

10.4  MDS as a Visualization Tool of Example Lesions

As an alternative approach to CADx, retrieving a set of known lesion similar to the 
one being evaluated might be of value in assisting radiologists in their diagnosis. In 
recent years, such an approach has been studied by researchers and applied for dif-
ferent lesion types and imaging modalities [31, 84, 86, 89, 91–94]. For this purpose, 
we have been studying the use of multidimensional scaling (MDS) for representa-
tion and analysis of similar lesions in a large dataset. In a retrieval framework, MDS 
can be used to study how a query tumor might be related to a set of similar images 
retrieved from a reference library [86]. When used as a visualization tool, MDS 
allows one to browse and explore intuitively the distribution of benign and malig-
nant MC lesions in a dataset and to examine how this distribution might be related 
to the features of the tumors [14, 15, 92, 95].

10.4.1  Multidimensional Scaling (MDS) Technique

MDS is a data embedding technique for representation and analysis of a set of 
objects based on their mutual similarity (or dissimilarity) measurements [96]. The 
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basic idea of MDS is to represent the objects of interest as points in a low- dimensional 
(typically 2D or 3D) space such that the geometric distances between the points in 
this space are in accordance with the similarity measurements between the corre-
sponding objects. The resulting representation in this lower dimensional space 
enables one to visualize the relationship among the objects in a rather intui-
tive manner.

Specifically, consider a set of N objects. The MDS seeks to embed these objects 
in a lower-dimensional space (R2 or R3) as a set of data points xi, i = 1, ⋯, N, such 
that the Euclidean distance d(xi, xj) between a pair of points xi and xj is proportional 
to their pairwise proximity measure δij. This is accomplished by minimizing the fol-
lowing objective function:
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where wij are weight factors (specified by users). The quantity σ is known as Stress-1, 
which measures the goodness of fit of the MDS model.

In our application, we use MDS to represent tumors from mammogram images 
as points in a 2D plane, wherein the similarity between a pair of tumor images is 
defined according to their perceptual similarity. Thus, tumors that are in close vicin-
ity of each other in the MDS plot correspond to those that are perceptually similar.

10.4.2  Exploring Similar MC Lesions with MDS

In order to explore how perceptually similar cases with clustered MCs may relate to 
one another in terms of their underlying characteristics (from disease condition to 
image features), we conducted an observer study to collect similarity scores from a 
group of readers on a set of 2000 image pairs, which were selected from 222 cases 
based on their images features. Afterward, we applied MDS to embed all the cases 
in a 2D plot, in which the potential relationship among the different cases is exhib-
ited according to their similarity ratings. Such a plot allows one to study how neigh-
boring cases (i.e., cases similar to each other) may relate to one another. In particular, 
we will examine the relationships among the cases in several aspects, including: (1) 
case pathology, (2) spatial distribution patterns of their clustered MCs, and (3) 
image pairs of clustered MCs that are highly similar.

Dataset: The dataset used in this study was collected by the Department of 
Radiology at the University of Chicago. It consists of 365 mammogram images 
from 222 cases (110 malignant, 112 malignant), of which all have been proven by 
biopsy containing lesions with MCs. These images are of dimension 1024 × 1024 
or 512 × 512 pixels, digitized with a spatial resolution of 0.1 mm/pixel. Among the 
222 cases, 143 have images in both carniocaudal (CC) and mediolateral-oblique 
(MLO) views. The MCs in each mammogram were manually identified by a group 
of experienced radiologists. These MCs were used as ground truth in our study.
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Since we are mainly interested in the pairs of images that are similar, we first 
apply a selection procedure based on the image features of the MCs in these cases 
to identify those potentially similar image pairs for reader scoring. For this purpose, 
a set of nine image features [11, 97] are used for quantifying the MCs; these features 
are commonly used for the classification of MC lesions in computer-aided diagnosis 
(CADx). Specifically, they are: (1) image features describing individual MCs, 
including the standard deviation of the image contrast values of MCs, and the maxi-
mum and the standard deviation of the sizes of MCs, (2) spatial clustering features 
of MCs, including the number of MCs in a cluster, the area of the cluster, and the 
compactness of the cluster, and (3) texture-based features, including the energy, 
contrast, and correlation derived from the gray-level co-occurrence matrices. The 
cases in the dataset are then selected for pairing based on the feature values 
(Euclidean distance) of their MCs. In the end, a total of 2000 image pairs were 
selected.

Subsequently, based on the similarity scores collected on the 2000 image pairs 
(described below), we further select a subset of 1000 image pairs from them, the 
purpose being to refine the set of potentially similar pairs for further reader scoring. 
These pairs are selected based on both the similarity scores from the readers and the 
Euclidean distances of the all nine features.

Reader study: The reader study was carried out by a group of five radiologists for 
the 1000 image pairs, based on their perceptual similarity, using a discrete scale 
from 0 (most dissimilar) to 10 (most similar). These five radiologists are MQSA- 
qualified breast imagers with between 2 and 20 years of experience. To reduce the 
effects of reader fatigue, the set of image pairs is randomly divided into four sepa-
rate scoring sessions. Similarly, a separate reader study was carried out by a group 
of five non-radiologists for the 2000 image pairs (which were used for further pair 
selection as described above). These readers were researchers in breast imaging 
with a minimum of 5 years of experience. A total of 10 separate sessions were used 
in scoring.

Because of the subjective nature in interpretation of clustered MCs in mammo-
gram images, readers can vary in their similarity scores. To suppress such apparent 
differences, we first transformed the similarity scores from individual readers into 
z-scores. Afterward, the scores were averaged among the readers for the set of 1000 
image pairs (denoted by S1), which were scored by both radiologists and non- 
radiologists, and similarly for the other set of 1000 image pairs (denoted by S2), 
which were scored by only non-radiologists. The average scores are further trans-
formed into z-scores.

MDS plot: To explore how perceptually similar cases with clustered MCs relate 
to each other, we apply the MDS technique to embed the different cases in the data-
set in a 2D plot based on their similarity scores.

Consider a pair of cases i and j with similarity score SCij. In the MDS placement, 
they will be separated by proximity
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where a constant offset 3.75 (over three standard deviation) is added to ensure that 
dij is positive.

Due to the fact that similarity scores are available for only those image pairs 
scored by the readers, the weighted MDS technique is used, in which those image 
pairs not scored are assigned a weight of 0; for the scored image pairs, the weight is 
adjusted according to the level of similarity and the readers for scoring as following: 
for image pair p consisting of cases i and j,
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The rationale for such a choice is to assign a higher weight value to pairs that are 
more similar and scored by more readers.
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Fig. 10.5 MDS embedding of perceptually similar cases in the dataset, wherein cancer cases are 
denoted by “red dots” and benign cases are represented by “blue squares.” The spatial distribution 
patterns of clustered MCs are shown for some sample cases, where the spatial MC locations are 
indicated by the “green plus” signs
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In Fig. 10.5, we show the MDS embedding of all the 222 cases in the dataset 
according to their similar scores. While at the first sight there is no apparent separa-
tion between cancer and benign cases, it is evident that there are more cancer cases 
(and fewer benign cases) in the right half of the plot than in the left half. More 
importantly, cases of same disease tend to be clustered together locally. For exam-
ple, while cancer cases are scattered in different regions throughout the plot, they 
are also distributed in small clusters in which a cancer case is closely surrounded by 
other cancer cases; the same is true for benign cases.

Furthermore, to explore how the readers’ notion of similarity may relate to the 
image features of the clustered MCs. We also show in Fig. 10.5 the spatial distribu-
tion patterns of the clustered MCs for some sample cases, where the spatial loca-
tions of the individual MCs are indicated by “+” signs. It can be seen that the 
neighboring cases tend to have MC clusters similar in size and shape and that the 
MC clusters in the right half of the plot tend to be larger and irregular.

10.5  Issues and Recommendations

Despite that there have been great many computerized methods developed for use 
in CADx schemes as a diagnostic aid to improving radiologists’ diagnostic accu-
racy, some significant, challenging issues still remain to be addressed. Below we 
discuss a few of them, which are by no means meant to be complete.

Thanks to intense research and development efforts, multiple laboratory observer 
studies have shown that CADx schemes can help improve the diagnostic accuracy 
in differentiating between benign and malignant tumors. For example, in mammog-
raphy, radiologists with CADx can improve their biopsy recommendation by send-
ing more cancer cases and fewer benign cases to biopsy [20–22, 75, 98].

In CADx, the computer predicts the likelihood that a lesion is malignant, which 
is presented to the radiologist as a second opinion. One difficulty in implementing 
CADx clinically is that a CADx classifier is often criticized for being a “black box” 
approach in its decision. When presented with a numerical value, such as the likeli-
hood of malignancy, but without additional supporting evidence, it may be difficult 
for a radiologist to incorporate optimally this number into his or her decision. As an 
alternative aid, image retrieval has been studied as a CADx tool in recent years. We 
conjecture that by integrating a retrieval system with the CADx classifier, the 
retrieved images could serve as supporting evidence to the CADx classifier, which 
may facilitate the interpretation of the likelihood of malignancy by the 
radiologists.

In the literature, the CADx schemes are often, if not always, developed with dif-
ferent datasets which are limited by the number of cases available. The heterogene-
ity among the different datasets will inevitably lead to variability when evaluating 
the performance of a CADx scheme. Thus, it is desirable to establish common 
benchmark databases which are large enough to be representative of a disease popu-
lation. In practice, this can be an expensive process. It will ensure that a CADx 
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scheme can be optimized and tested without any bias so that it can generalize well 
when applied to cases outside the database.

Finally, while research and development has led to improvement in CADx per-
formance, as a diagnostic aid, the accuracy level achieved by CADx classifiers is 
rather moderate for certain tumor types due to the inherent difficulty of the problem 
(e.g., MC lesions). There is still need for development of more salient features and 
CADx algorithms in order to improve the classification accuracy. This may include 
the use of additional features acquired from multi-modality imaging.

10.6  Conclusions

In this chapter, we presented the application of machine learning algorithms in 
CADx systems. Particularly, we presented examples of its application in mammog-
raphy to differentiate benign and malignant cases. A main critique of traditional 
CADx approaches when implemented clinically is that a CADx classifier could be 
perceived as a “black box” approach in its decision. As an alternative aid, CBIR has 
been studied as a CADx tool in recent years. We conjecture that with the integration 
of a retrieval system and a CADx classifier, the retrieved images could serve as sup-
porting evidence to the CADx classifier, which may facilitate the interpretation of 
the likelihood of malignancy by the radiologists in clinical practice. In this chapter, 
we presented the process of developing and validating such system exploiting both 
supervised and unsupervised machine learning algorithms.
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11.1  Introduction

Image segmentation is an important task routinely performed in radiotherapy to iden-
tify treatment targets and anatomical structures (organs-at-risk, OARs). In a typical 
clinical workflow, a radiation oncologist or dosimetrist manually segments these 
regions of interest (ROI) on a radiotherapy simulation scan. Traditionally, computed 
tomography (CT) scans have been used for radiotherapy simulation; however, with the 
increasing role of magnetic resonance imaging in brachytherapy procedures and with 
the advent of magnetic resonance(MR)-guided external beam RT, MR simulation 
scans are being more rapidly adopted for radiotherapy planning in clinics worldwide. 
The manual segmentation of these ROIs is a time-consuming process with some stud-
ies reporting several hours of physician time per patient [1–3]. This could lead to sig-
nificant delays in start of radiotherapy treatment, particularly in clinics with limited 
resources, which has been correlated to worse loco-regional control and overall 
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survival rates [4, 5]. Furthermore, the significant time commitment required to segment 
each patient’s ROIs has been regarded as a rate-limiting step for adaptive RT, as it is 
necessary for the ROIs to be segmented on new imaging reflecting patient’s anatomical 
changes to ensure accurate dose accumulation estimates for the radiotherapy treatment.

The efficacy and safety of the radiotherapy plan require accurate segmentations as 
these regions of interest are generally used to optimize and assess the quality of the 
plan. However, inconsistencies in target and OAR segmentations have been reported in 
studies assessing inter- and intra-observer segmentation variability [1, 6–8]. These 
inconsistencies may arise from the fact that the segmentation task can be subjective in 
nature as the expert performing the segmentations evaluates the available imaging and 
then makes the decision, based on prior knowledge and/or experience, of what voxels 
to include as part of the ROI being segmented. Subsequently, the inherent variability 
observed in manual segmentations could have a significant impact on quantitative [9–
13] (e.g., radiomics) and dosimetric analyses [1, 14–16]. Automatic segmentation (or 
auto-segmentation) is, therefore, preferable as it would address these challenges.

Auto-segmentation algorithms must overcome several image-related problems 
to ensure accurate predictions. First, medical images are subject to noise that can 
affect the intensity of a voxel. Second, tissues within a patient typically exhibit 
intensity nonuniformity, meaning that voxel intensities within a single tissue may 
vary over the extent of the image. Lastly, medical images are reconstructed during 
acquisition to have a predefined voxel size which leads to partial volume averaging. 
Limited by a finite image resolution, voxels may contain more than one tissue such 
that the voxel intensity may not be representative of either tissue class. Furthermore, 
there are imaging modality-related challenges that may be specific to individual 
modalities. While MR scans provide exquisite soft tissue contrast, image intensities 
tend to vary between acquisitions due to magnetic susceptibility artifacts. These 
problems, along with the large anatomical presentation and tissue distribution 
among different individuals in a population, suggest that some degree of uncertainty 
is expected for both manual and auto-segmentations.

The field of medical image auto-segmentation has rapidly evolved over the past 
two decades. Previously, auto-segmentation techniques have been grouped into 
first-, second-, and third-generation algorithms, representing a new standard in algo-
rithm development [17]. However, more recently, deep learning-based auto- 
segmentation techniques have been shown to provide significant improvements over 
more traditional approaches, suggesting we have entered the fourth generation of 
auto-segmentation algorithm development.

The field of deep learning became more mainstream after the seminal paper by 
Krizhevsky et al. showed that using a deep convolutional neural network architec-
ture (AlexNet) could significantly improve predictions in image classification and 
recognition tasks [18]. In their work, the authors employed graphical processing 
units (GPU) to perform convolutional computations significantly reducing the time 
required to train their classification model on the ImageNet dataset [19]. Shortly 
after, research showed that using convolutional neural networks (CNN) for image 
segmentation tasks could outperform previously preferred algorithms, resulting in 
the swift adaptation of these architectures for medical image auto-segmentation.

This chapter provides a brief overview of traditional (pre-deep learning era) 
auto-segmentation techniques, introduces concepts behind deep learning-based 
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auto-segmentation algorithms and commonly used architectures, presents consider-
ations for clinical implementation of auto-segmentation tools, and provides a brief 
overview of the state-of-the-art results in radiotherapy image segmentation.

11.2  Traditional Auto-Segmentation Techniques

The development of auto-segmentation algorithms has been accompanied by the 
capability of the algorithms to use prior knowledge for new segmentation tasks. In 
an early stage, limited by the computer power and the availability of segmented 
data, most segmentation techniques used no or little prior knowledge, referred to as 
low-level segmentation approaches. More advanced techniques were developed in 
an attempt to avoid heuristic approaches leading to the introduction of uncertainty 
models and optimization methods [17, 20].

11.2.1  First-Generation Auto-Segmentation Techniques

The first generation of auto-segmentation techniques are low-level techniques that 
include little to no prior information. These include thresholds, region growing, and 
edge tracing. These techniques are common and available in most commercial con-
touring solutions. Thresholds are simply applied with cutoff image intensity units to 
identify contrasting regions of image intensity. These are commonly used within 
commercial systems to contour contrasting organs from their surrounding areas, 
such as the lungs or brain. Region growing involves picking a seed location and 
identifying a homogeneity criteria. Pixels or voxels that meet these criteria are 
included. This process is applied outward from the seed location to determine the 
contour. Region growing is often used in contouring lesions on PET images, while 
tools exist for CT contouring but are less consistent in their results due to difficulty 
in determining the homogeneity criteria to be used. First-generation techniques 
often suffer from all main issues that plague auto-segmentation techniques: noise in 
images that affects intensity of pixels, intensity nonuniformity where a given tissue 
gradually varies in intensity over the image, and partial volume averaging. Users 
always have to make significant edits to structures generated using these techniques.

11.2.2  Second-Generation Auto-Segmentation Techniques

The second-generation techniques attempt to handle these issues that affect auto- 
segmentation with uncertainty models and optimization methods. Techniques that fall 
into this group are statistical pattern recognition, c-means clustering, deformable 
models, graph search, multiresolution methods, minimal path, and target tracking.

Region-based techniques, such as active contours, level-sets, graph cuts, and 
watershed algorithms, have been used in medical imaging auto-segmentation. 
Active contours and level-set algorithms are considered deformable models as they 
use closed surfaces that are able to contract or expand to conform to distinct image 
features within an image, whereas graph cuts and the watershed algorithm employ 
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principles behind graph theory to maximize interconnections between image vox-
els. Probability-based auto-segmentation techniques, such as Gaussian mixture 
models, clustering, k-nearest neighbor, Bayesian classifiers, and shallow artificial 
neural networks, rose in popularity with the turn of the century thanks to advances 
in the statistical community and the availability of higher computing power. These 
approaches are characterized by their ability to classify individual voxels in an 
image as belonging to one of a known set of classes; however, these typically lack 
contextual information from neighboring voxels (as voxels are classified indepen-
dently) which is often mediated by implementing hidden Markov random fields [21].

11.2.3  Third-Generation Auto-Segmentation Techniques

Third-generation techniques further build upon the advances of the second genera-
tion to avoid the image based-issues of segmentation by incorporating higher-level 
knowledge. This is done through a priori information, defined rules, and models of 
the desired contour. These techniques include shape models, appearance models, 
atlas-based segmentation, rule-based segmentation, and coupled surfaces.

In the last two decades, a large amount of exploratory work has been invested in 
making use of prior knowledge. An example is the use of shape and appearance 
characteristics of anatomical structures to compensate for insufficient soft tissue 
contrast of CT data which prevents accurate definition of the anatomical boundary. 
Depending on how much prior knowledge is used in the algorithms, the approaches 
can be grouped as (multi)atlas-based segmentation, model-based segmentation, and 
machine learning-based segmentation [22].

Single atlas-based segmentation uses one reference image with structures of 
interest already segmented, referred to as an atlas, as prior knowledge for new seg-
mentation tasks [23]. The segmentation of a new image relies on deformable regis-
tration finding the optimal transformation between the atlas and the new image to 
map the atlas contours onto the new image (Fig. 11.1). Varied deformable registra-
tion algorithms have been used for this purpose [24–29], and most of them are 
intensity-based algorithms. The segmentation performance solely depends on the 
performance of deformable registration, which is influenced by the similarity of the 
morphology of organs of interest between atlas and the new image. To achieve good 
segmentation results, varied atlas selection strategies have been proposed [30–36]. 
Alternatively, using an atlas that reflects an average patient anatomy can potentially 
improve segmentation performance [37, 38].

Atlas-based segmentation is often impacted by inter-subject variability. Instead 
of using a single-atlas, multi-atlas approaches use a number of atlases (usually 
around 10) as prior knowledge for new segmentation tasks [39–44]. Similar to 
single- atlas-based approaches, deformable registration is the enabling technique to 
map individual atlas contours to the new image (Fig.  11.1). An additional step, 
frequently referred to as label/contour fusion, is performed to combine the indi-
vidual segmentations from multiple atlases to produce a final segmentation that is 
the best estimate of the true segmentation [36, 45–48]. Multi-atlas segmentation 
has been shown to minimize the effects of inter-subject variability and improve 
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Single-Atlas-based Auto-Segmentation

Atlas Patient Space
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Fig. 11.1 Comparison of single-atlas- and multi-atlas-based auto-segmentation. For multi-atlas- 
based auto-segmentation, multiple atlases are used to generate contours on the new CT image; the 
resultant individual atlas segmentations are then combined to derive the final auto- segmented contour
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segmentation accuracy from single-atlas approaches. The atlases define the prior 
knowledge, which therefore can affect the accuracy of contours based on represen-
tation within the atlases; for example, if only post-operational head and neck 
patients are used to define head and neck atlases, then contours on a pre-opera-
tional patient will not perform well as this patient is not represented in the prior 
knowledge. In the past decade, multi-atlas segmentation has been shown as one of 
the most effective segmentation approaches in several grand challenges [49–51]. 
This approach has been validated for clinical radiation oncology applications in 
contouring head and neck normal tissue [52], cardiac substructures [53], brachial 
plexus [41], and others.

When more contoured images are available, characteristic variations of shape or 
appearance of structures of interest could be used to train statistical shape models 
(SSM) or statistical appearance models (SAM) for auto-segmentation. SSM uses 
deformable models while limiting the extent of allowed model deformation. 
Landmark points on an object boundary are identified and analyzed on training 
images to determine a statistical representation. Then in contouring, deformation 
occurs but is restricted within the bounds of the model. SAM is an extension of SSM 
where both shape and intensity of an object are incorporated into a statistical model. 
These approaches can restrict the final segmentation results to anatomically plausi-
ble shapes described by the models [54]. However, model-based segmentation is 
less flexible due to the limitation of specific shapes characterized by the statistical 
models. Also, size and content of the training data limit the segmentation perfor-
mance. In radiation oncology applications, model-based segmentation is mostly 
used for the segmentation of structures in the pelvic region [55–57].

On the other hand, when more contoured images are available, machine learning 
approaches can aid in segmentation by learning correspondent features for struc-
tures and organs or image context and tissue appearance for voxel classification 
[58–60]. Support vector machines [61–65] and tree ensemble (i.e., random forests) 
[66–72] algorithms have shown promising results in thoracic, abdominal, and pelvic 
tumor and normal tissue segmentation. These generally employ human-engineered 
features (i.e., radiomics) usually derived from the image intensity histograms, from 
a large patient database as inputs to train the segmentation model (Fig.  11.2). 
Conventional radiomics features were originally designed for use with satellite 
images to determine objects within the image, such as the gray level co-occurrence 
matrix from Haralick [73]. The medical community has adopted these conventional 
features although their biological meaning can be difficult to understand in com-
parison to intensity histogram features, such as kurtosis. Additionally, studies 
employing radiomics features often use different filters before extraction of the fea-
tures which creates a large number of features to be analyzed. Therefore, techniques 
must be employed to efficiently reduce the number of features before proceeding 
with model building to ensure adequate power is preserved. Typically for contour-
ing, the simple intensity and gradient features are used. Radiomics (see Fig. 11.2) 
has been used to contour brain tumors [58, 61, 62], liver [63], lung nodules [65], 
cardiac structures [66], the prostate and prostatic lesions [57, 60, 74], pelvic organs 
[70], kidney sub-structures [68], chest lymph nodes [71], and others.
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The traditional auto-segmentation techniques have advanced significantly over 
the last decade due to advancements in computing systems. The first-generation 
techniques are simple and do not require much computing power. These techniques 
are standard tools in most commercial contouring systems. With the advancement in 
computers, the second- and third-generation techniques came into being and allowed 
the use of a priori information. The most significant of these techniques, as it is 
more and more readily available in commercial systems, is atlas-based segmenta-
tion. Recently, there have been further advancements in computing systems that 
have moved auto-segmentation into deep learning and transitioned into the fourth 
generation of auto-segmentation techniques.

11.3  Deep Learning-Based Auto-Segmentation

Over the past few years, deep learning networks have made tremendous advances in 
image segmentation, resulting in the birth of a new generation of segmentation 
models. Paving the way as the fourth generation of auto-segmentation algorithms, 
deep learning models often achieve the highest segmentation accuracy on public 
segmentation challenges, suggesting we are entering a paradigm shift in medical 
image auto-segmentation algorithm development.

Fig. 11.2 Illustration from Serag et al. [72] demonstrating how imaging features can be used for 
medical image segmentation. The green box represents a small window from the test image from 
which different feature maps are calculated (shown by the green rectangle). Similarly, features 
from other patients are used to train a model that can be used as classifier to classify individual 
pixels on the test window
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11.3.1  Convolutional Neural Networks and Fully 
Convolutional Networks

Convolutional neural networks (CNN) are of interest in computer vision tasks (i.e., 
segmentation, detection, classification) as these learn the filters or kernels that were 
previously engineered for use in traditional approaches. These architectures are usu-
ally formed by stacking several types of layers (convolutional layers, pooling layers, 
fully connected layers, etc.) that transform the input (image) into the desired output. 
Convolutional, pooling, and fully connected layers are further defined in the follow-
ing paragraphs (Fig. 11.3).

A convolutional layer contains a set of learnable filters or kernels. Each filter has 
a predefined size (width, height, and depth) which is generally spatially small when 
compared with the input image size. For example, a 3D image segmentation net-
work may use an initial filter size of 3 × 3 × 3 which corresponds to 3 voxels for 
width, 3 voxels for height, and 3 voxels for depth where width and height can be 
thought of pixels in an axial slice and depth provides information from slices below 
and above the central slice. During training, filters within convolutional layers are 
convolved about the input image computing dot products between the values of the 
filter and the input image at any position. As the filters are convolved throughout the 
whole input image, a convolutional layer generates an activation map that provides 
the responses of that filter at every spatial position. Through the training process, the 
network will initially learn filters that activate when they see specific visual features 
such as edges or textures, eventually learning more abstract patterns on higher lay-
ers of the network. Usually, many filters are used in a single convolutional layer, and 
each of them will produce individual activation maps which are then concatenated 
to produce the output for an individual convolutional layer. An important feature of 
convolutional layers is that they provide local connectivity between neurons of adja-
cent layers. This allows the networks to learn features both globally and locally, 
allowing the network to detect subtle variations in the input data.

Parameters typically defined for a convolutional layer include padding, stride, 
and dilation. Image padding (i.e., adding a new pixel(s) around the edges of an 
image) can be used to ensure that the input and output volumes of a convolutional 
layer have the same size spatially. The stride is the step the kernels take as they 
convolve about an input volume. For example, using a stride of S = 1 ensures that a 
filter is convolved on every pixel in an input volume, while using a stride S = 2 
would only calculate activations for every other pixel. Using a stride S > 1 will result 
in a reduction of the output volume. To determine the effect of padding/stride on the 
output volume O, one can use the following relationship: O = (W − F + 2P)/S + 1, 
where W is the input volume size, F is the filter size, P is the padding used, and S is 
the stride. For a 17 × 17 input, a filter size of 3, padding of 1, and stride of 2, O 
would result in an output image of 9 × 9 [(17 − 3 + 2 (1))/2 + 1 = 9]. Another hyper-
parameter for the convolutional layer is the dilation of the filters. Traditionally, fil-
ters used in imaging are continuous (dilation D = 1), meaning that the pixels used in 
the dot product of the convolution are all spatially next to each other. Filters using 
dilations that are greater than 1 (D > 1) can quickly increase the receptive field of 
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Fig. 11.3 Illustration 
adapted from Cardenas 
et al. [20] demonstrating 
the difference between 
convolutional neural 
networks and fully 
convolutional networks 
(encoder–decoder). The 
middle panel shows 
commonly used 
components of 
convolutional networks, 
whereas the bottom panels 
provide examples of how 
convolutional layer 
parameters affect the size 
of the layer’s output size 
(including increasing 
receptive field for the 
layer)
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the layer by using filters that have spaces between pixels during the dot product. 
Here, the receptive field is defined as the region in the input space that a particular 
CNN’s feature is looking at (i.e., be affected by). For example, a 3 × 3 filter with 
dilation D = 2 has the effective receptive field of a 5 × 5 filter (see Fig. 11.3).

Pooling layers usually follow successive convolutional layers in a typical convo-
lutional neural network. These layers reduce the spatial size of convolutional layers’ 
output volumes to decrease the number of parameters and computations through the 
network. Pooling layers operate on each individual activation map from the previ-
ous layer to spatially resize resulting maps, typically using the max pooling opera-
tion. To further explain this process, we present the following example: a pooling 
layer with filters of size 2 × 2 convolved using a stride of 2 results in the down- 
sampling of the input volume by 2 on each dimension. In this 2D scenario, the pool-
ing layer removes 75% of the activations as the max pooling operation takes the 
maximum over 4 numbers (2 × 2 filter size). Other pooling operations such as aver-
age pooling or L2-norm pooling are available, but max pooling is often preferred 
due to its mathematical simplicity and reliable use in practice.

Fully connected layers are not commonly used in image segmentation nowadays 
but are important to understand as they are commonly used in CNNs for classifica-
tion (e.g., feed forward/perceptron). All neurons in these layers are connected to all 
activations in the previous layer and can be computed with a matrix multiplication, 
making it faster to compute than convolutional layers. Fully connected layers are 
used in many popular CNN classification architectures as the last layers prior to the 
final output of the network; after feature extraction (via convolutional layers), the 
fully connected layers are able to classify the data into N defined classes by learning 
a function between the high-level features given as an output from the convolu-
tional layers.

Initially, CNN architectures like AlexNet [18] and VGG [75] were investigated 
for segmentation purposes by generating individual pixel classifications. This 
approach was computationally ineffective as the same convolutions are computed 
several times due to the large overlap between input patches from neighboring pix-
els and resulted in pixel predictions which lacked correlation to neighboring pixels. 
Fully convolutional networks (FCNs) were introduced by Long et al. to overcome 
the loss of spatial information resulting from the implementation of fully connected 
layers as final layers of classification CNNs [76]. In this seminal work, the authors 
modified the VGG16 [75] and GoogLeNet [77] and replaced all fully connected 
layers with the fully convolutional layers. Using this approach results in the model 
producing a spatial segmentation map instead of individual voxel classification 
scores. Long et al. used skipped connections to concatenate feature maps from ear-
lier layers and combined these with the final layers of the model which are up- 
sampled back to the original image size to produce accurate and detailed 
segmentations. This work was one of the first to demonstrate that a deep learning 
network can be trained for semantic segmentation in an end-to-end manner.

Most architectures used for medical image segmentation are based on 2D or 3D 
variants of successful methods adapted from computer vision. Improvements in 3D 
convolution computation efficiency and hardware, in particular the fast increase in 
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available GPU memory, have promoted the extension of these methods to 3D imag-
ing. Patch-wise architectures, those using 2D (Nx × Ny) or 3D (Nx × Ny × Nz) patches 
centered around the voxels in an image, were introduced to address these bottle-
necks. In this simple approach, patches extracted from the whole image, along with 
their corresponding label maps, are used to train the segmentation network. Several 
approaches (shift-and-stitch, fusion, etc.) are being used to combine individual 
patch segmentation probability maps to create dense outputs [76, 78, 79]. Some 
results have suggested that the performance of patch-wise architectures can be 
improved by using multi-scale inputs (multiple inputs with different patch sizes) 
which provide the network with global and local context [80, 81].

11.3.2  Popular Deep Learning Auto-Segmentation Architectures

The most popular medical image segmentation deep learning architecture is the 
U-Net [82] (Fig.  11.4). While previous works had already proposed the use of 
encoding and decoding paths to create dense outputs, Ronneberger et al. combined 
this approach with skip connections, which concatenate features from the encoding 
to the decoding layers [82]. Thus, higher resolution features from the encoding path 
along with the up-sampled features from the decoding path allow for the architec-
ture to better localize and learn representations from the input image. Furthermore, 
the U-Net allowed for efficient end-to-end training, meaning that it did not require 
a pre-trained network as others had previously proposed, and showed that the net-
work could be trained to produce accurate segmentations with very little labeled 
training data. The original 2D application of the U-Net was extended by Cicek et al. 
to allow the use of 3D images to train this network [83].

Other groups have introduced variants of the original U-Net architecture. 
Milletari et al. proposed the V-Net [84], a 3D version of the U-Net architecture that 
introduced the use of a Dice coefficient loss function and implemented residual 
learning [85] at each resolution stage (Fig. 11.4). Other variations of the U-Net 
include Hybrid Densely Connected U-Net (H-DenseUNet) [86], Res-UNet [87], 
and UNet++ [88]. Each adaptation from the original U-Net implements novel strat-
egies which allow for better segmentation accuracy when compared to the original 
U-Net architecture. Dense U-Nets take advantage of dense (or “skip”) connections 
between architecture layers; for example, H-DenseUNet uses repetitive densely 
connected building blocks (a building block is a group of stacked convolutional 
layers) where each block has connections to all subsequent layers [86]. Using 
dense connections has some advantages: the dense connectivity between layers 
results in fewer output dimensions than traditional networks avoiding learning 
unnecessary features. Also, having a dense path results in each layer receiving all 
the information learned by previous layers improving gradient flow which is essen-
tial when training and searching for an optimal solution in deep neural networks. 
Other dense U-Nets include Multi-scale Densely Connected U-Net (MDU-Net) 
[89], Distributed Dense U-Net (DDU-Net) [90], among others. For the Res-UNet, 
Diakogiannis et al. [87] replace the building blocks of the U-Net architecture with 
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Fig. 11.4 Comparison between the vanilla U-Net [82] (top), the V-Net [91] (center), and the 
UNet++ [88] (bottom) deep learning architectures. The circles in this figure represent individual 
convolutional blocks. The V-Net builds on the vanilla U-Net by adding residual connections at 
each convolutional block. The UNet++ architecture uses dense connections (i.e., every convolu-
tional block is connected to convolutional blocks down-stream) and deep supervision (shown by 
red lines). Here the UNet++ generates four predictions, and their individual losses are taken into 
consideration when training the model
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modified residual blocks as those introduced by He et al. [85]; residual blocks are 
useful as they reduce inherent vanishing and exploding gradients which are com-
monly present in deep architectures. In addition, they use dilated (atrous) convolu-
tions within each residual block to increase the receptive field of each layer. 
UNet++ combines previously introduced dense connections and deep supervision 
to further improve the traditional U-Net. In UNet++, the connections from the 
encoding path go through a densely connected block where the number of convolu-
tion layers depends on the pyramid level (green circles in Fig. 11.4). Deep supervi-
sion is a technique in deep learning where a model learns to generate representations 
of the output at multiple levels of the network and results in faster convergence. 
Deep supervision can be thought of as a way to improve the learning process; here, 
previous layers in the network are checked via deep supervision (i.e., evaluated 
against the physician- approved segmentations) to ensure that the learned features 
are passed on to subsequent layers and are useful in identifying additional features 
as the network becomes deeper. In this work, the authors design the UNet++ to 
generate full-resolution feature maps at multiple levels (shown by red lines in 
Fig. 11.4) each with individual loss metrics that focus learning at each level in the 
network.

Kamnitsas and collaborators [80, 92] introduced the DeepMedic architecture 
which used multi-scale 3D CNNs with fully connected conditional random fields 
[93] for brain lesion segmentation (Fig. 11.5). Their dual pathway architecture pro-
vided the network with local and more global context from the input images by 
using image patches at multiple scales simultaneously. Other groups have used this 
multi-scale approach to improve auto-segmentation results. For example, Roth et al. 
used a multi-scale pyramid of 3D FCNs for abdominal organ segmentation [94]. In 
this work, the authors use inputs from two scales (low- and high-resolution inputs) 
centered about the same voxel to improve normal tissue auto-segmentation [94]; 
here, two FCNs are used where the first network uses the low-resolution image and 
its output is resized and used as an additional input for the high-resolution image. 
Using this approach, the authors are able to provide global context from the low- 
resolution image while being able to perform fine-detail segmentations on the high- 
resolution input using end-to-end training.

Fig. 11.5 DeepMedic architecture from Kamnitsas et  al. [92] Multi-resolution inputs (normal 
[green] and low resolution [blue]) are used to learn local and global information about the region 
of interest
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Dilated convolutional networks such as those in the DeepLab family and the 
Densely Connected Atrous Spatial Pyramid Pooling (DenseASPP) [95] have been 
popular in image segmentation. Developed by Chen et  al., DeepLabV1 [96], 
DeepLabV2 [97], DeepLabV3 [98], and DeepLabV3+ [99] (the DeepLab family) 
are deep convolutional neural networks which, at the time of their publication, have 
been considered state-of-art segmentation architectures. In DeepLabV1, the authors 
used atrous convolutions to explicitly control the resolution at which feature maps 
are computed within the architecture. DeepLabV2 adds the use of atrous spatial 
pyramid pooling (ASPP) which allows for the network to segment objects at mul-
tiple scales with filters at multiple sampling rates which provide additional context 
for the segmentation task. The DeepLabV3 uses image-level features within the 
ASPP module to capture long-range information; furthermore, the authors also 
include batch normalization layers to improve training. DeepLabV3+ implements 
an encoder–decoder architecture which uses the DeepLabV3 framework as the 
encoder. In addition, dilated depthwise separable convolutions and pointwise con-
volutions are used throughout the network. Similarly, the DenseASPP [95] architec-
ture takes advantage of densely connected atrous convolutional layers to effectively 
generate densely spatial-sampled and scale-sampled features in a deep network. An 
advantage of this network is that there are no pooling operations (no encoding/
decoding paths) so each layer in the network captures features in the original resolu-
tion of the input image.

While generative adversarial networks (GANs) have found a niche in medical 
imaging in the generation of synthetic images such as generating synthetic CT 
images from MR scans, GANs have also been shown to produce high-quality results 
for segmentation tasks [100]. Auto-segmentation models that adopt GANs usually 
train a segmentation network (generator) which is coupled with an adversarial net-
work that discriminates physician-approved segmentation maps from those seg-
mentations generated by the segmentation network. The discrimination network 
here is used to see if the generator network can generate segmentations that “fool” 
the discriminator by creating segmentations that are indistinguishable from the 
manual contours (Fig. 11.6). Coupling these networks results in an end-to-end solu-
tion which can lead to more realistic segmentations. While GANs are very promis-
ing for image segmentation, they are unstable during training often leading to the 
model to not converge, the generator’s collapse, or discriminator being too success-
ful causing the generator’s gradient to disappear resulting in a model that does not 
learn during the training process.

Recurrent neural networks (RNNs) have been previously explored to leverage 
contextual information for 3D image segmentation. RNNs are often used in junction 
with a convolutional neural network (e.g., U-Net) which generates segmentations 
on a 2D image providing intra-slice context where the RNN exploits inter-slice 
context to improve the accuracy of the automatically generated segmentations. 
Previously, Chen et al. [102] used a bidirectional contextual long short-term mem-
ory (BDC-LSTM) network, a type of RNN, which applied a sequence of 2D feature 
maps from adjacent 2D slices (i.e., z − 1, z, and z + 1) extracted from a series of 2D 
U-Nets which generated segmentation probability maps for each slice (i.e., partial 

R. B. Ger et al.



245

3D volume). This approach was popular in the early days of deep learning-based 
auto-segmentation as they overcame the need to use 3D architectures, which were 
computationally expensive with available GPU hardware, providing sequential 
object-connectivity (morphology) information from previously segmented 2D 
slices. RNNs found a niche in the automatic segmentation of serial (i.e., contiguous) 
structures and organs such as the heart vessels, gastrointestinal organs, and spine, 
where information from adjacent slices provides better connectivity through the 3D 
volume segmentation. Image segmentation RNNs are computationally expensive to 
train, and for this reason, their use has recently been declined for medical image 
segmentation.

Attention-based image segmentation architectures have recently gained popular-
ity. Attention gates are useful as they can reduce redundant model parameters by 
allowing the network to focus on portions of an image which are more relevant 
while suppressing unimportant regions of the image. How attention is derived can 
vary among architectures; a key variant is the use of soft or hard attention. Soft 
attention is when the network calculates the context vector as a weighted sum of the 
encoder hidden states. Hard attention differs in that attention scores are used to 
select a single hidden state (e.g., using argmax function). Both hard and soft atten-
tion approaches have been explored, but soft attention mechanisms are often pre-
ferred as they are differentiable and can be updated via back propagation making 
them relatively easy to train. Attention gates incorporated into existing architectures 
like the U-Net (Fig. 11.7) can improve model sensitivity and accuracy to the result-
ing segmentations without significantly increasing the computational overhead. 
When using the U-Net as an example, attention gates are implemented before con-
catenation of skip connections and up-convolutional layers; by merging only rele-
vant activations, gradients carrying information from the background class are 

Ground Truth Mask

Segmentation Network Predicted Mask

Critic Network

Fully Convolutional Network

Fully Convolutional Network

or 0/1

Fig. 11.6 Illustration by Dai et al. [101] of how GANs can be used for image segmentation. Here 
a fully convolutional network is used as a generator and the resulting predicted masks are com-
pared to the physician-approved truth segmentations using an adversarial network to further refine 
the auto-segmentations
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down-weighted during backpropagation allowing parameters in prior layers to be 
updated focusing on spatial regions of an image that are relevant to the segmenta-
tion task. More recently, channel attention modules have been explored. Here, the 
channels are the feature maps generated by a convolutional layer block. One can 
think of these channels (or feature maps) to have class-specific responses where dif-
ferent features are associated with individual segmentation classes/organs. 
Furthermore, combining spatial and channel self-attention modules has been shown 
to further improve segmentation accuracy compared to individual modules alone.

11.4  Image Segmentation Packages and Publicly 
Available Datasets

Open-source software and publicly available datasets have contributed and sup-
ported medical image research for decades advancing our knowledge and under-
standing of computational algorithms leading to breakthroughs in algorithm 
development and improvements for a variety of medical image analysis tasks 
including image segmentation. In this section, we provide an overview of medical 
image segmentation open-source software, highlight the role of publicly available 
datasets in driving medical image segmentation research, and discuss the automatic 
segmentation tools currently available in commercial systems.

11.4.1  Open-Source Image Segmentation Packages

Several open-source software tools have been developed for medical image seg-
mentation over the past decade. The software tools described in the following para-
graphs provide automatic segmentation algorithms that vary in levels of complexity 
including basic intensity thresholding techniques, semi-automatic approaches 
(active contours with user defined seeds), atlas-based algorithms, and, more recently, 
deep learning-based algorithms. The tools described in this section have been devel-
oped for research and are not intended for clinical use.

3D Slicer is a software platform which was developed for the analysis and visu-
alization of medical images [104]. It supports multi-modality imaging including 
MRI, CT, ultrasound, nuclear medicine, and microscopy images. 3D Slicer is widely 
used in the medical imaging community as it provides plug-in capabilities for add-
ing new algorithms and applications. Some examples of these plug-ins include the 
semi-automatic PET tumor segmentation [105], a fast implementation of the 
GrowCut method [106], and DeepInfer [107] which is a deep learning deployment 
toolkit extension. ITK-SNAP is a software tool which was designed with a focus on 
medical image segmentation [108]. Its interface provides tools for manual segmen-
tation and image navigation which are complemented with a semi-automatic seg-
mentation tool which uses active contour segmentation algorithms. The latest 
release of ITK-SNAP (3.8.0) introduced Distributed Segmentation Services (DSS) 
which is an architecture that allows segmentation tasks to be implemented as 
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services on the internet [109]. DSS provides a platform for segmentation algorithm 
developers to make their algorithms publicly available to ITK-SNAP users.

Plastimatch [110] is a software tool that was developed to perform volumetric 
registration of medical images (i.e., CT, MR, PET) and offers a system to perform 
multi-atlas-based segmentation (MABS). Within Plastimatch, a user can use MABS 
to prepare their own atlas, perform the segmentation, and tune parameters within 
MABS to further improve the quality of the automatic segmentations. A feature of 
MABS is that the user can select the registration strategy including algorithm and 
registration metric. Seg3D is another open-source software tool which was devel-
oped specifically for medical image segmentation [111]. Its interface allows the 
user to use basic semi-automatic segmentation tools such as intensity thresholding 
and level set segmentation, which uses seeds to find regions in a data volume that 
are similar to the original seed using statistics calculated in the seed region to deter-
mine the extent of volume expansion about individual seeds.

As deep learning-based segmentation research has ramped up over the past few 
years, several open-source platforms have emerged to increase the access and avail-
ability to these algorithms and trained models. The Deep Learning Tool Kit [112] 
(DLTK) is a neural network toolkit written in Python which uses TensorFlow [113], 
an open source library for development and training of machine learning models, as 
its backend. DLTK has a Model Zoo which offers a limited number of segmentation 
models. NiftyNet [114] is another open-source convolutional neural network plat-
form built-on TensorFlow for research in medical image analysis and segmentation. 
NiftyNet provided an easy way to share networks and pre-trained models, as well as 
implementation of commonly used architectures (e.g., U-Net, DeepMedic), loss 
functions, and a comprehensive list of evaluation metrics for image segmentation. 
In early 2020, the developers of NiftyNet decided to transition developing efforts 
from NiftyNet toward Project MONAI (Medical Open Network for AI). MONAI 
[115] is a framework that uses PyTorch [116] for deep learning in healthcare imag-
ing. While in its early days, MONAI provides tutorial examples for training volu-
metric image segmentation models. Eisen is another framework which implements 
an API that builds directly on PyTorch to enable simple and quick development and 
experimentation with deep learning models. Eisen [117] provides a feature where 
users can design experiments and define deep learning workflows by visually mix-
ing (drag/drop) Eisen building blocks. Medical Image Segmentation with 
Convolutional Neural Networks [118] (MIScnn) is an open-source Python library 
which offers an API for medical image segmentation pipelines based on Keras with 
Tensorflow as its backend. It offers a variety of 2D and 3D segmentation architec-
tures and commonly used loss functions for medical image segmentation model 
training. NVIDIA’s Clara [119] is a healthcare application framework for AI-powered 
imaging, genomics, and for development and deployment of smart sensors. Through 
the Clara Train SDK, Clara allows for AI-assisted annotations and collaborative 
learning using techniques such as federated learning and transfer learning which 
enables researchers to collaborate and build AI models while keeping data private 
and secure. Furthermore, Clara offers Clara Deploy SDK which allows for the cre-
ation of application workflows for inference of AI-models.
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11.4.2  Publicly Available Datasets

The availability of publicly available datasets with manually labeled segmentations 
has promoted advances in segmentation algorithm development. These datasets are 
generally published as part of “grand challenges” that are usually hosted by orga-
nizations such as the American Association of Physicists in Medicine (AAPM), the 
Medical Image Computing and Computer-Assisted Intervention (MICCAI) 
Society, and the International Society for Optics and Photonics (SPIE). These seg-
mentation challenges allow participants to evaluate their algorithm’s performance 
on a common benchmark image dataset. The Cancer Imaging Archive [120] 
(TCIA) has played a tremendous role in making medical imaging datasets avail-
able to the public. TCIA data is organized in patient cohorts or “collections” with 
many publicly available datasets providing RTSTRUCT files containing clinical 
contours or contours generated for a specific purpose (i.e., segmentation chal-
lenge). Similarly, the website https://grand- challenge.org (accessed 7/27/2020) 
provides a platform for the medical imaging community to upload medical imag-
ing data easily and securely. Through this site, researchers around the globe are 
able to share medical imaging challenge data to promote algorithm development 
through scholarly competitions. Several popular segmentation challenge datasets 
such as the LiTS [121], BraTS [122], KiTS [123], SegTHOR [124], RT-MAC[125], 
PROMISE12 [126], Head And Neck Auto-Segmentation Challenge [50] are adver-
tised through this website.

At this time, radiation oncology datasets are relatively sparse due to numer-
ous barriers of data sharing. As a community, we should strive for the promotion 
and adoption of data sharing solutions across institutional and international bor-
ders. In regard to data sharing barriers in radiation oncology, Thompson et al. 
[127] suggests that “just as open-access publication is mandated for publicly 
funded research, perhaps FAIR-compliant DICOM-RT and matched clinical 
data publication could be a requirement of any publicly funded radiotherapy 
trials.” Access to standardized datasets could further promote algorithm devel-
opment and serve as a common ground for algorithm evaluation; however, sev-
eral factors should be considered to ensure that curated datasets are representative 
of diverse clinical populations to reduce implicit biases. For image segmenta-
tion, it is important to have a representative distribution of patients within the 
training data and to clearly indicate this. For widely dispersed models, these 
should include patients with a variety of anatomical presentations (i.e., post-
operational), patient setup positions (supine, prone, etc.), as well as demo-
graphic and clinical backgrounds. For models that are specific to one patient 
population, training data can be limited to that specific population, but this limi-
tation should be denoted so the model is not incorrectly applied to other patient 
populations later. In addition, to achieve high robustness in auto-segmentations, 
it is important to consider the quality of the medical images. For example, fac-
tors such as image noise, spatial resolution, and low contrast could impact the 
quality of the resulting segmentations.
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11.4.3  Commercial Systems

Tools from the first and second generation of auto-segmentation, such as intensity 
thresholding and region growing algorithms, are included in almost every commer-
cial contouring software. The third- and fourth-generation techniques are more 
novel and still growing in their availability across platforms.

Raystation, Velocity, Elekta, and Philips offer model-based segmentation which 
works for a small number of vendor defined structures with adjustable shape, size, 
and property parameters for different organs at risk. There are many commercial 
systems that currently offer atlas-based contouring [128]. Mirada Medical offers 
WorkFlow Box which uses deformable image registration to automatically apply 
contours to CTs based on multiple expert atlases. MIM Software has MIM Maestro 
where one can use auto expert atlases or user defined atlases. These can be sorted by 
TNM status, lesion laterality, or physician. Multiple atlases can be selected to start 
the auto-segmentation, in which case, a structure set is created for each atlas and 
STAPLE is used for each contour. Elekta has Atlas-Based Autosegmentation 
(ABAS) which approximates the contours by scanning a library of reference images. 
The user can select an atlas from the library or choose to use the STAPLE algorithm. 
The user cannot see or edit the contours within ABAS, but the contours can be 
imported into other contouring software. Philips offers Smart Probabilistic Image 
Contouring Engine (SPICE) which is within the treatment planning system Pinnacle. 
SPICE uses a combination of rigid and deformable registrations together with 
probability- based structure refinements. Raystation offers the Anatomically 
Constrained Deformation Algorithm (ANACONDA) which uses a hybrid model 
that combines information from image intensities and anatomical information. 
Velocity has an atlas-based model that uses b-spline deformable image registration. 
It has both expert atlases and allows user-defined atlases [129]. Velocity allows a 
local deformable registration for individual structures which can allow for a better 
match before structure creation. Velocity also allows for user-defined exclusion 
areas, such as high-contrast artifacts due to dental work or arms, to allow for better 
registration. Varian offers SmartSegmentation within the treatment planning system 
Eclipse which is focused on CT-based auto-segmentation. SmartSegmentation pro-
vides an auto-segmentation solution based on a deformable image registration algo-
rithm (enhanced form of the Demons algorithm combined with a multi-resolution 
approach [24]). Brainlab provides atlas-based contouring within its treatment plan-
ning software which offers contouring of anatomical and surgical structures [130, 
131]. The reference atlas is built on the CT of a single patient with segmentation 
based on deformable image registration with active post-processing. Additional 
commercial atlas-based segmentation systems are IMAgo from Dosisoft, OnQ RTS 
from OSL, and MultiPlan from Accuray.

Currently, there are fewer commercially available deep learning-based segmen-
tation options, although this is rapidly changing as many vendors are investing 
resources in developing these tools. Most of these are black-boxes systems with 
minimal information on their designs. Mirada’s DLCExpert uses convolutional neu-
ral networks for the automatic segmentation of organs for various anatomical sites 
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[132, 133]. Raystation offers a deep learning solution for the thoracic region and 
male pelvis with the option for the user to develop their own model for other sites 
using transfer learning. Manteia offers a model that mixes a convolutional neural 
network with other traditional machine learning techniques and image registration. 
Microsoft’s Project “InnerEye” uses decision forests and adversarial neural net-
works. Limbus Contouring (Limbus AI, Regina, Canada) offers deep learning-based 
contouring for some treatment sites including CNS, head and neck, thorax/breast 
and pelvis [134, 135]. AI-based automatic contouring is also being offered by some 
CT vendors (e.g., SOMATOM go.Sim by Siemens [136]).

The Radiation Planning Assistant (RPA, https://rpa.mdanderson.org) is a cloud- 
based service being developed at The University of Texas MD Anderson Cancer 
Center to offer a suite of fully automated contouring and radiotherapy treatment 
planning tools (Fig. 11.8). While the RPA is currently available for retrospective 
review of contours and radiotherapy plans [137–140], it is seeking its medical 
device clearance by the Food and Drug Administration to offer the RPA to low- and 
middle-income countries where access to radiotherapy is limited and less accessi-
ble. The RPA uses deep learning-based auto-segmentation models to automatically 
generate contours for a variety of treatment sites [141–146].

11.5  Auto-Segmentation Software Commissioning 
and Quality Assurance

When contours are used in the radiotherapy treatment planning process, any errors 
in the segmentation can have a serious impact on the patient treatment. According 
to AAPM TG 275, “Strategies for Effective Physics Plan and Chart Review in 
Radiation Therapy,” two of the top ten failure modes in radiotherapy treatment plan-
ning result from “wrong” or “inaccurate” target contours [147]. Depending on the 
location and extent of the error, normal tissues (e.g., cord) could receive unintended 
doses, or targets could be under-treated. Thus, it is important to perform appropriate 
evaluation and commissioning of the auto-segmentation algorithm, routine proce-
dural maintenance of the system, and patient-specific verification of the 
auto-segmentations.

Fig. 11.8 Illustration from Kisling et al. [138] where auto-segmented bony structures are used to 
automatically define treatment fields for cervical cancer radiotherapy
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11.5.1  Auto-Segmentation Evaluation

The commissioning process involves testing of the functions of a given piece of 
software and documentation of its different capabilities. The most obvious test for 
segmentation software is an evaluation of the accuracy of the segmentation, proba-
bly by comparison with manually drawn contours using overlap and distance met-
rics. An extensive review of overlap and distance metrics used for medical imaging 
segmentation quantitative analysis can be found in the publication by Taha and 
Hanbury [148]. In the next paragraphs, we provide a brief summary of the most 
commonly used segmentation metrics in the literature and present some recently 
proposed metrics (Fig. 11.9). It should be mentioned that quantitative metrics can be 
used to evaluate similarity between automatic segmentations and their correspond-
ing physician-approved (manual) segmentations, but they could also be used to 
evaluate manual segmentations between multiple observers to quantify inter- 
observer variability and to evaluate multiple contours from a single observer to 
measure intra-observer variability (i.e., reproducibility).

The Dice Similarity Coefficient [149] (DSC) is the most commonly used overlap 
metric in medical image segmentation. The DSC is defined in Eq. 11.1,

 

DSC �
�

�

2 A B

A B  
(11.1)

where |A| and |B| are the volumes from contours A and B, respectively, and |A∩B| 
denotes the intersection volume between contours A and B. The DSC has values that 
range between 0 and 1, with a score of 1 meaning there is perfect overlap and a score 
of 0 meaning that there is no overlap between the segmentations. The Jaccard Index 
[150] (JI) is similar to the DSC where values range from 0 to 1 (1 for perfect over-
lap); the JI measures the intersection (|A∩B|) over the union (|A∪B|) between two 
contours (Eq. 11.2).

 

JI �
�

�

A B

A B  
(11.2)

The JI is also referred to as the conformity index (CI) or the Intersection over 
Union (IoU). Both the DSC and JI are sensitive to volume sizes with larger volumes 
generally resulting in DSC and JI values closer to 1.

When considering surface distance metrics used to compare two segmentations, 
the mean surface distance (MSD), often referred to as the Average Symmetric 
Surface Distance (ASSD) [54], and the Hausdorff distance [151] (HD), often 
referred to as the Maximum Symmetric Surface Distance (MSSD), are routinely 
used in medical image segmentation studies. These metrics calculate the minimum 
distance (typically the Euclidean distance) between finite points on two closed sur-
faces (Eq. 11.3). Here, for a volume A, distances are calculated from each point (a) 
to each point (b) in volume B, resulting in a vector of distances (d(A,B)) equal in 
length to the number of points on the surface of volume A.
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d A B a b,� � � �min  (11.3)

Generally, these distances are calculated in both directions (i.e., A →  B and 
B → A) and the resulting list of distances from both surfaces are used to calculate 
both MSD and HD. The MSD and HD are defined in Eqs. 11.4 and 11.5, respectively.
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(11.4)

 
HD , , ,� � �� � � �� �� �max max maxd A B d B A  (11.5)

Fig. 11.9 Visual 
representation of the 
overlap and distance 
metrics defined in 
Eqs. 11.1–11.5, as well as 
the surface Dice metric

11 Auto-contouring for Image-Guidance and Treatment Planning



254

A limitation of the HD is that it is sensitive to outliers. For this reason, the 95th 
percentile HD (95HD) is often used in the literature (Eq. 11.6).

 
95 95 95HD percentile , , ,percentile , ,� � �� � � �� �� �max d A B d B A  (11.6)

Here, the 95th percentile is calculated on the vector of distances calculated for 
both surfaces.

More recently, Nikolov et  al. introduced the surface Dice as a new metric to 
compare two segmented volumes [152]. Here, each volume’s surface (S1 and S2, 
Fig. 11.9) is dilated using a predefined tolerance value (τ). The dilated surfaces (D1

(τ) 
and D2

(τ)) are then used to calculate the overlap between the non-dilated and oppo-
site dilated surfaces (i.e., S1∩D2

(τ)). An advantage to using the surface Dice is that it 
allows for generating organ-specific tolerance values which can be generated using 
manual contours from multiple observers (Nikolov et al. used 95th percentile of the 
distances collected across multiple segmentations [152]); however, there is the 
requirement of generating the tolerance values for each organ, and these may be 
dependent on a variety of factors such as interpreter’s experience, image modality, 
image quality, etc. which may be a limiting factor when using this metric to com-
pare studies in the literature.

Lastly, the added path length (APL) was recently introduced by Vaassen et al. as 
a metric to evaluate manual adjustments made to an auto-segmentation [133]. In this 
study, the authors show that the path length of a contour that had to be added 
(whether by shrinking or expanding a volume) during manual edits of an auto- 
segmented organ required to meet institutional contouring guidelines was closely 
correlated with the required time necessary for the manual adjustments.

11.5.2  Patient-Specific Evaluations

Currently, there is no specific guidance for patient-specific evaluations of auto- 
contours as the integration of auto-segmentation systems in clinics has not been 
widely adopted. As the use of these tools increases, there is a need for guidance until 
such AAPM report is published. Previous AAPM reports can be utilized to fill this 
gap. AAPM TG-132 [153], which is on image registration in radiotherapy, employs 
concepts that are directly applicable to auto-segmentation. AAPM TG-132 states, 
“For initial commissioning of an image registration system, quantitative validation 
is required; however, for patient-specific evaluation of image registration, quantita-
tive verification is not always possible due to limited time and resources and diffi-
culty in determining the ground truth.” Similarly, for auto-contours, the ground truth 
contour is not available for reference. Therefore, these contours must be qualita-
tively evaluated by the dosimetrist, physicist, or physician. During the commission-
ing process specific guidance on the amount of deviation each contour can have 
should be established. Auto-contours may differ from manual contours, but these 
differences should be minimal, resulting in only cosmetic change of the contour 
with little to no dosimetric impact for most contours, otherwise the tool is not an 
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appropriate fit for the clinic. It can be a time-consuming activity to edit the auto- 
contours; therefore, the guidance established at commissioning will determine 
which contours need to be manually edited during the qualitative review.

Automatic quality assurance of auto-segmentations has also been investigated 
[141, 154–156]. These measure ROI-specific characteristics (centroid, volume, 
shape, etc.) and use statistical approaches to determine any large deviations in seg-
mented volumes. Another suggested approach, for example, could use the results of 
a primary segmentation algorithm and compare these to a secondary verification 
algorithm [141]. This approach requires the two algorithms to be independent, as 
the assumption is that they will fail in different ways. Although this approach does 
not replace the need for careful review of contours by the attending physician, it 
may help flag cases that will require extra attention.

11.5.3  Commissioning and QA

Evaluation for clinical use, however, involves a more comprehensive evaluation 
than quantitative analyses alone. The commissioning process should include exten-
sive testing with patient data from the local institution, to ensure that the software 
works as expected for their range of image types, patient anatomies, etc. Additionally, 
it is important to ensure that segmentations created within one software tool are 
exported/imported properly to other systems, with all segmentations’ information 
being transferred consistently and accurately to the treatment planning system. If 
the segmentation does not work sufficiently, accurately, or reliably for any of these 
combinations, then this limitation should be clearly documented so that the users 
are aware, and vendors can address these issues. Lastly, it is important to train users 
so that they understand the potential and limitations (risks) of the auto-segmentation 
software.

AAPM TG-53 provides information on QA for the TPS [157]. It details many 
QA checks for the treatment planning process and not just the system itself. It spe-
cifically addresses tests that should be performed in Tables 3–4 and 3–5 (see AAPM 
TG-53). MPPG 5a, which discusses commissioning of the TPS, emphasizes that 
representative patient cases should be utilized in commissioning [158]. Similarly, 
for auto-segmentation, representative patients should be selected for use in commis-
sioning with a subset of these used for routine QA, as suggested by MPPG 5a. Such 
site-specific (e.g., abdomen, thorax) uses of auto-segmentation tools should be com-
missioned individually. Likewise, if the auto-segmentation tool is intended for sin-
gle or multi-imaging modality use, the tool should be evaluated on the appropriate 
imaging modality or modalities (e.g., CT, CBCT, MR). Contour similarity and dosi-
metric comparisons should be performed during commissioning to establish guid-
ance for clinical use. Two of the quantitative metrics posed by TG-132 for 
commissioning and QA involve the use of contours which makes them directly 
translatable to auto-segmentation evaluation [153]. These are mean distance to 
agreement (which is the monodirectional equivalent of the MSD, i.e., A → B only) 
and DSC which should be used to determine the contour similarity between manual 

11 Auto-contouring for Image-Guidance and Treatment Planning



256

contours and auto-contours. The manual contours used for this should be performed 
in the typical workflow of the clinic, whether that is dosimetrists, physicists, or 
physicians contouring the anatomy. An easy way to achieve this is to select previ-
ously treated patients. The tolerance suggested by TG-132 for these two quantitative 
metrics can be applied here: the mean distance to agreement should be “within the 
contouring uncertainty of the structure or maximum volume dimension (~2–3 mm),” 
and the DSC should be “within the contouring uncertainty of the structure 
(~0.80–0.90).”

For dosimetric comparisons, plans generated using the manual contours and the 
typical workflow should be used and then re-calculated on the auto-contours. 
Qualitative DVH analysis can be performed along with specific clinical end points 
for each OAR (e.g., mean dose to parotid) to determine if the auto-contours provide 
an accurate and reasonable representation. Plans should also be created using the 
auto-contours and then compared to determine if there is an impactful difference in 
the optimization due to their use. Using previously treated patients will also make 
this step easier as there will be no need to create the treatment plan on the manual 
contours as this will already be present. The results from the contour and dosimetric 
evaluations should allow for specific guidance on necessary edits to auto-contours 
(e.g., identification of cosmetic changes that would not need to be used). This should 
be clearly documented and presented during training to those who will be clinically 
using the auto-segmentation tools. One method to ensure accurate performance is 
end-to-end testing. If auto-segmentation tools are to be used within the clinical care 
path (either during treatment planning or online during image-guidance or adaptive 
treatment), incorporating the use of such tools into end-to-end testing is desirable, 
yet not currently available for auto-segmentation evaluation.

After commissioning of the auto-segmentation tool has been accomplished, 
appropriate tolerance and action levels should be established (as a function of site, 
imaging modality, and clinical endpoint). The evaluation of these tools should take 
place through an ongoing, periodic QA program. Further evaluation should take 
place upon update of the auto-contouring software, as changes in performance may 
impact the quality of clinical segmentations. Also, it is important to note that 
changes in simulation procedure (e.g., patient positioning, use of new simulation 
devices) may have unintended consequences upon the performance of auto- 
segmentation tools. Thus, any changes in imaging or simulation protocols should be 
accompanied with the evaluation of tool performance using established tests from 
the QA program. The results of the QA tests may indicate whether the software 
update or procedural modification yields results within acceptable levels. Because 
contouring can cause major failures modes in radiotherapy, performing a failure 
modes and effects analysis as described in AAPM TG-100 can further elucidate 
potential failures modes [159]. Such a process is highly encouraged when incorpo-
rating new operations into the clinical care path, as new technology may incorporate 
new failures modes.

Once the commissioning process is complete, and the physicist has established a 
QA program, the software can then be released for clinical use. It is essential to train 
users on the auto-segmentation software and to highlight potential limitations and 

R. B. Ger et al.



257

risks identified during the commissioning process. Some routine maintenance is 
necessary afterwards to ensure that the software continues to perform in a consistent 
manner. The focus on quality is, however, now performed on an individual patient- 
by- patient basis. All segmentations should be carefully reviewed and approved by 
the local clinical staff (e.g., radiation oncologists) before use in a treatment plan. 
During the initial stages of deployment, the output of the automatic segmentation 
software should be treated as if a trainee had performed the contouring—that is, it 
is probably a reasonable starting point, but careful review is essential. The benefits 
of peer-review assessment through quality assurance contouring rounds have been 
previously reported [160–162], and establishing similar practices to assess auto- 
segmentation results, even for algorithms that have been shown to give excellent 
segmentations, could ensure the overall safety of the radiotherapy treatment.

11.5.4  Current Limitations to Auto-Segmentation Algorithm 
Development and Implementation

There are several important limitations to auto-segmentation algorithm develop-
ment and use. Many data-related challenges are presented in auto-segmentation 
applications, especially the requirement of high-quality segmented datasets. Auto- 
segmentation algorithm performance approaches depend not only on the quantity 
but also on the quality of the segmentations (i.e., prior knowledge) used to train or 
develop a model. This limitation could be addressed through standardization of 
manual contours via the adoption of established international consensus guidelines. 
A reduction in inter- and intra-observer contouring variability could further improve 
the prediction accuracy of an existing model.

Many algorithms provide very little interpretability to understand what features 
(anatomical and/or image intensity-based) play an important role in generating an 
automatic segmentation. Multi-atlas-based segmentation and deep learning-based 
segmentations suffer from this limitation which may hinder the ability of research-
ers or end-users to fully understand and identify the cause behind inaccurate 
segmentations.

Individual algorithms are subject to their own limitations. For the first- and 
second- generation techniques, the contrast and noise within an image can play a 
large role in the performance of segmentation. For atlas-based approaches, the qual-
ity of the automatic segmentations is closely related to the performance of the reg-
istration algorithm. If the registrations between atlas patients and a reference 
patient’s image are poor, one would expect the atlas-based approach to generate 
poor quality segmentations. Deep learning approaches can be subject to overfitting, 
which often happens when a model captures patterns in the training set with much 
higher accuracy compared to the accuracy of the model’s predictions on unseen 
data. One of the leading causes of overfitting in deep learning-based image segmen-
tation is the use of sample datasets which are not representative of the larger patient 
population. There may be a wide variety in position and shape of the internal organ 
which may be dependent on how the patient is set up during image acquisition, 
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patient’s clinical presentation (e.g., anatomical and density changes due to patholo-
gies), and/or prior interventions such as surgeries.

Lastly, variations in image acquisition protocols could potentially affect the per-
formance of an auto-segmentation algorithm. Ger et al. scanned a radiomics phan-
tom on 100 CT scanners using the local head protocol, local lung protocol, and a 
controlled protocol [163]. While only 20% of the scanners were within the radiation 
therapy department, there was a large variety in the settings used for the head and 
lung protocol scans across which would lead to differences in noise and partial vol-
ume effects. The controlled protocol could reduce variability in imaging features by 
over 50%. However, such a standardized protocol for patients is not something that 
will be seen in the larger community as each institution optimizes scanning proto-
cols for their scanner, thus the variability in the local protocol scans is a realistic 
snapshot of the variability. This could potentially make some models not transfer-
able due to using training data only at one institution that uses a specific scanning 
protocol that is significantly different than another institution. Recently, Huang 
et al. demonstrated the potential impact of several of these imaging protocol settings 
on atlas-based and deep learning-based auto-contouring [164]. This work demon-
strated that deep learning-based auto-segmentations may be more robust to changes 
in imaging protocol than atlas-based approaches.

11.6  Overview of State-of-the-Art Results in Medical Image 
Auto-Segmentation

The following section provides a summary of the state-of-the-art performance from 
recently published auto-segmentation works focusing on normal tissues, as well as 
tumors and clinical target volumes.

11.6.1  Normal Tissues

11.6.1.1  Craniospinal
The human central nervous system is composed of the brain and spinal cord. Two of 
the most prominent volumetric imaging modalities used for anatomic imaging of 
the central nervous system are MRI and CT. In general, MRI has superior soft tissue 
contrast to that of CT and can distinguish between different tissues by exploiting 
differences in relaxation times. To isolate the brain from non-brain structures (e.g., 
skin, skull, eyes), “skull stripping,” or brain extraction, is an essential step for many 
neuroimaging workflows, morphological studies, and studies involving clinical 
diagnoses. Many prominent automated approaches for skull stripping have been 
developed to include mathematical morphology-based methods, intensity-based 
methods, deformable surface-based methods, atlas-based methods, and hybrid 
methods and are discussed at length by Kalavathi et al. [165] However, such meth-
ods can fail depending on the type of MRI scan and pathology present in the scan. 
To address such failures, three-dimensional deep learning methods using CNNs are 
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emerging to remedy skull stripping failures to improve the robustness of skull strip-
ping across various imaging modalities and pathologies. When these deep learning 
methods are evaluated on publicly available skull-stripped databases from the 
Preprocessed Connectomes Project [166], mean DSC values, sensitivity, and speci-
ficity exceed 0.985 for extracted brains [167, 168].

In 2013, the MRBrainS13 workshop was launched through MICCAI to segment 
white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) using 3T 
multi-sequence (T1w, T2-FLAIR, and T1-IR) MRI scans. The leading team was 
able to segment WM, GM, and CSF with DSC mean values 0.88, 0.84, and 0.78, 
respectively [169]. To segment other sub-structures within the brain, Moeskops 
et al. used a CNN architecture with 9 branches to input T1w, T2-FAIR, and T1-IR 
scans and output segmentations for WM, cortical gray matter (cGM), basal ganglia 
and thalami (BGT), cerebellum (CB), brain stem (BS), lateral ventricular cerebro-
spinal fluid (lvCSF), peripheral cerebrospinal fluid (pCSF), and white matter hyper-
intensities with presumed vascular origin (WMH) [170]. Using this approach, mean 
DSC values were 0.87, 0.85, 0.82, 0.93, 0.92, 0.93, 0.76 for each structure, respec-
tively. Later in 2018, the MRBrainS18 Challenge was won by Luna et  al. who 
designed a three-dimensional patchwise U-Net with transitional layers to segment 
GM, BGT, WM, WMH, CSF, ventricles, cerebellum, and brain stem with mean 
DSC values of 0.86, 0.83, 0.88, 0.65, 0.84, 0.93, 0.94, and 0.91 respectively [171].

When radiotherapy treatment planning of the brain is performed, MRI is advan-
tageous and allows for accurate contouring of the brain and its sub-structures. 
However, since MRI image voxels do not contain the relevant electron density 
information necessary for heterogeneous dose calculation, CT images must be reg-
istered to MRI scans to facilitate dose calculation. To evaluate the dose to the brain 
and its sub-structures, contours made using the MRI can be mapped to the CT, or 
contours can be generated using only the CT.  In scenarios where MRI scans are 
contraindicated or cost prohibitive, cross modality synthesis using GANs has been 
investigated by many authors to create synthetic MRI scans from CT scans or vice 
versa [100]. Such work may soon allow for contours made on one imaging modality 
to be directly mapped to synthetic scans for use in adaptive radiation therapy or 
image guidance. Although interest in automatically contouring cranial structures 
from CT has historically been limited due to poor soft tissue contrast, recent studies 
using atlas-based approaches have been performed [172, 173] (Fig. 11.10). Current 
deep learning approaches that automatically segment the brain and brainstem 
directly from CT images are described in the following section (see Sect. 11.6.1.2).

Segmentation of the spinal cord in MRI images has many applications in the 
study of neurological diseases. Changes of size or shape in the spinal cord are 
known to be correlated with changes in cortical activity and can also gauge dis-
ability [174, 175]. To characterize the state-of-the-art performance in gray and 
white matter segmentation within MRI images of the spinal cord, the Spinal Cord 
Grey Matter Segmentation Challenge was organized [176]. A recent approach 
from Perone et al. using deep dilated convolutions to segment gray matter from the 
spinal cord brings mean DSC on this public dataset to 0.85 [177]. Spinal cord is 
also readily contoured on CT images for the purposes of radiotherapy treatment 
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Fig. 11.10 Illustration from Irimia et  al. [172] showcasing the impact of image resolution on 
automatic segmentations (row B vs. row C). The authors evaluated models using full resolution 
(1 × 1 × 1.25 mm3, row B) and down-sampled resolution (1 × 1 × 3.75 mm3, row C) CT scans. As 
expected, the segmentations on the down-sampled images were limited due to the lower spatial 
resolution resulting in lower quality segmentations. To further visualize the segmented gray matter, 
the authors provide T1-weighted MR images (row A); here, the white matter segmentations are not 
outlined to appreciate regions of contrast between the white/gray matter
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planning. Because the spinal cord is a serial organ and has dire consequences for 
patients when dose tolerances are exceeded, accurate contouring of the spinal cord 
is essential. According to a review on auto-segmentation by Cardenas et al., numer-
ous deep learning studies report DSC values for spinal cord spanning from 0.82 to 
0.96 [20].

Surrounding and protecting the spinal cord is the vertebral column. To perform 
medical image-related tasks such as radiotherapy treatment planning, oncologic 
surgical staging, image-guided intervention, or clinical diagnoses, specific regions 
of the spine must be localized (i.e., labeled) and/or segmented. Assessment of soft 
tissue complications or involvement of the spine can be visualized with MRI, while 
assessment of osseous integrity or spatially accurate three-dimensional morphology 
is best visualized with CT imaging [178, 179]. In addition to localization and seg-
mentation being time-intensive tasks, challenges related to anatomic abnormalities 
(e.g., scoliosis, atypical vertebral counts) and variations in imaging protocol (e.g., 
field-of-view, slice thickness, patient orientation) make automation of localization 
and segmentation difficult. Recent advancement in these areas have been driven by 
the availability of high-quality datasets, international challenges, multi-center stud-
ies, and innovations in machine and deep learning.

Datasets and challenges archived by SpineWeb (http://spineweb.digitalimaging-
group.ca/) contain those from CT, MRI, planar X-ray, and other imaging modalities. 
Such challenges address vertebra localization and segmentation on CT [180, 181], 
intervertebral disk localization and segmentation using MR, and numerous others. 
Many of these competitions have been hosted though MICCAI or annual CSI 
Workshops. To provide a common benchmark for researchers to develop accurate 
algorithms, Sekuboyina et  al. organized the Large-Scale Vertebrae Segmentation 
Challenge (VerSe) to be held in conjunction with MICCAI 2019. VerSe provides the 
largest collection of publicly available CT scans (160 image series of 141 patients; 
annotated masks of 1725 vertebrae) to date [182]. From this competition, the 
approach by Payer et al. [183] using a spatial configuration-net plus U-Net obtained 
a DSC of 89.8% and identification rate of 94.2% across all vertebral bodies in the 
spine for the test set [184].

One challenge of deep learning-based localization is finding an effective meth-
odology to encode long-range contextual information from distant anatomic land-
marks into the model. To automatically label vertebral bodies in CT images, authors 
have used a myriad of approaches by incorporating multi-view frameworks [142, 
185, 186] (Fig. 11.11), recurrent networks [187, 188], hidden Markov models [189, 
190], or other classification techniques [191–193] into CNN for localization. Many 
localization networks, such as the approach by Payer et al., are used in two-step 
approaches, where localization, and then segmentation, is performed [183]. In other 
instances, networks perform both localization and segmentation using one frame-
work [189, 192, 194]. One example of such an approach was by Lessmann et al. 
where their FCN performs iterative instance segmentation, regression of anatomic 
labels, and visibility prediction [192]. This approach was validated on both MRI 
and CT images and obtained second place in the VerSe 2019 challenge with DSC of 
85.85% and identification rate of 89.9%.
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11.6.1.2  Head and Neck
Head and neck cancer radiotherapy treatment planning is considered one of the 
most complex sites due to the large number of organs at risk found in the head and 
neck region. The development of an auto-contouring tool can alleviate the complex-
ity of the process by saving a significant amount of time contouring these tissues. 
Because of this, many types of research on automation of contouring head and neck 
normal tissues have been conducted by various groups. Furthermore, there were 
numerous challenges and competitions to investigate the best approach for develop-
ing an auto-contouring tool through the AAPM or MICCAI annual meetings [49, 
50, 195].

CT is the primary imaging modality used for the head and neck radiotherapy 
planning process, and therefore, the majority of the auto-contouring tools for head 
and neck normal tissues have been developed for CT images. Nikolov et al. [152] 
trained a 3D U-Net to auto-contour 21 head and neck normal tissues (brain, brain-
stem, cochleae, lacrimal glands, lenses, lungs, mandible, optic nerves, orbits, parot-
ids, spinal canal, spinal cord, and submandibular glands) and achieved mean DSC 
values between 0.57 and 0.99 (Fig. 11.12). They acquired CT images from TCIA 
[120] and created manual contours from radiation oncologists and radiation therapy 
technologists to test their model, and then made these contours publicly available so 
that other researchers can use them as benchmarking data. Rhee et al. [141] used a 
CNN-based classification architecture to limit the extent of CT slices in the cranio-
caudal direction and applied a segmentation model to auto-contour 16 normal tis-
sues with the 3D V-Net [84] and achieved mean DSC values of 0.41–0.98. Wang 
et al. used a two-stage 3D U-Net framework [196] (Fig. 11.13), where the bounding 
box of the organ-of-interest was located on the first stage, and the fine segmentation 
was performed on the bounding box on the second stage. They achieved mean DSC 
values of 0.93, 0.86, 0.88, 0.76, 0.74, 0.4, and 0.45 for the mandible, parotids, brain-
stem, submandibular glands, optic nerves, and chiasm, respectively. Iyer et al. [197] 
developed an auto-contouring tool specifically for swallowing and chewing struc-
tures using the DeepLabV3+ in 2.5D, where the model input consists of three con-
secutive slices, and achieved mean DSC values of 0.88, 0.87, 0.83, 0.81, 0.80, and 
0.67 for the right masseter muscle, left masseter muscle, larynx, left medial ptery-
goid muscle, right medial pterygoid muscle, and constrictor muscles, respectively.

Although head and neck radiotherapy planning fully on MR images is not com-
mon, the availability of online adaptive therapy with MR-LINAC increases the 
desire to develop an MR-based auto-contouring tool for head and neck normal tis-
sues. Lei et al. [198] used a 3D Faster R-CNN [199] to segment eight normal tis-
sues, and achieved mean DSC values of 0.89, 0.89, 0.85, 0.85, 0.84, 0.82, 0.81, and 
0.79 for oral cavity, spinal cord, mandible, pharynx, esophagus, left parotid, right 
parotid, and larynx, respectively.

11.6.1.3  Thoracic
Examples of normal tissue structures in the thoracic region of the body include the 
breast, lymph nodes (e.g., supraclavicular, axillary, internal mammary), spinal cord, 
lungs, esophagus, and heart. These structures are commonly segmented on CT or 
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MRI images for the purposes of radiotherapy treatment planning. Guidelines for 
manually contouring these organs are often found in international consensus guide-
lines such as those from the North American-based Radiation Therapy Oncology 
Group (RTOG) and European Society for Radiotherapy and Oncology (ESTRO). To 
further increase consistency and efficiency in contouring, atlas and deep learning- 
based methods can be used to automatically contour normal tissue structures in the 
thoracic region for the purposes of radiation treatment planning. Although no gold 
standard library exists in any imaging modality for thoracic structures, various 
grand challenges hosted through professional organizations have established bench-
mark datasets for the evaluation of accurate auto-segmentation techniques. One 
such example was the AAPM 2017 Thoracic Auto-segmentation Challenge, in 

Fig. 11.12 Comparison between physician and auto-segmented contours from the work of 
Nikolov et al. [152] The authors can achieve human performance when evaluating head and neck 
normal tissue auto-segmentations
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which CT data and RTOG-guided segmentations (left and right lungs, heart, esoph-
agus, and spinal cord) from multiple clinics were made available from The Cancer 
Imaging Archive (TCIA) for participants to train and test their auto-segmentation 
techniques [51, 120]. From the results of the competition it was found that deep 
learning outperformed atlas-based segmentation in accuracy and prediction time 
[51]. Other evidence for how deep learning-based segmentation methods outper-
form atlas-based segmentation methods has also been noted by other commercial 
tools such as MIRADA’s DLC Expert for organs-at-risk in lung cancer [132]. The 
winning team from the Thoracic Segmentation Competition (Elekta) used a hierar-
chical segmentation approach to segment the lungs with a fast 2.5D residual U-Net, 
crop the area surrounding the lungs, and then segment the thoracic structures using 
a 3D model. Mean DSC and HD95% values were 0.97 and 2.9  mm, 0.97 and 
4.7 mm, 0.93 and 5.8 mm, 0.72 and 7.3 mm, and 0.88 and 2.0 mm for left lung, right 
lung, heart, esophagus, and spinal cord, respectively. Using this same training and 
testing data from the AAPM Thoracic Segmentation Challenge, Dong et  al. 
improved on previous U-Net-based methods by incorporating the use of GANs in a 
U-Net-GAN for multi-organ segmentation [200]. This method involved the use of a 
discriminator, was superior to U-Net alone, and produced mean DSC values for 
esophagus superior to those from the 2017 challenge as well as MSD and HD95 
values superior to all previous contenders for all other structures [200].

Although the above-mentioned models performed well on test sets from the 
competition, out-of-sample input complications can be caused by predicting con-
tours on images when differences in simulation procedure and patient positioning 
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96×96×56

Training data
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Training data 384×384×224
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Fig. 11.13 Two-step approach used by Wang et al. [196] to auto-segment head and neck normal 
tissues. Here the authors used a localization network (LocNet) to find a bounding box volume to 
generate full-resolution segmentations (SegNet) used as final segmentations for individual 
organs at risk
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are different from those used in the training set. This was demonstrated by Feng 
et al. when differences in patient abdominal position caused incorrect segmenta-
tions when using a previously trained network with the AAPM Thoracic 
Segmentation Challenge dataset [201] (Fig. 11.14). By incorporating as few as 10 
cases from the other dataset, the accuracy and robustness of the model were restored 
to a performance level previously attained [202]. In addition, Schreier et  al. has 
investigated how the use of multi-institution, single-single institution, and third- 
party trained models for contours used in breast cancer radiotherapy can be lever-
aged to create accurately trained deep learning models. The model used for this 
study was BibNet, a U-Net inspired architecture with residual and skip connections 
at every resolution level which demonstrated mean DSC values of 0.924, 0.929, and 
0.951 for left breast, right breast, and heart, respectively [203].

SpinalCord
Seg. CNN

Localization
and Cropping

using CNN
Resizing

and MergingRight Lung
Seg. CNN

Left Lung
Seg. CNN

Heart
Seg. CNN

Esophagus
Seg. CNN

Fig. 11.14 Illustration of the two-step approach used by Feng et al. [201] Here the authors first 
identify a bounding volume within the CT scan which contains individual organs at risk, then using 
individual organ at risk models, the authors generate individual ROI auto-segmentations
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The Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, hosted 
in conjunction with MICCAI 2017, has provided researchers with multi-modality 
scans (60 CT and 60 MRI) with manually contour cardiac substructures. Of the 
twelve groups that submitted entries, it was found that CT-based models were, in 
general, better than MRI-based approaches [204]. The best algorithms were able to 
achieve mean DSC values of 0.908 and 0.870 for CT- and MR-based approaches, 
respectively, on the challenge’s final test dataset. For datasets not incorporating con-
trast enhanced scans, Morris et al. developed 3D deep learning techniques to seg-
ment sub-structures of the heart (Fig.  11.15) that were superior to multi-atlas 
techniques [205].

11.6.1.4  Pelvis and Abdomen
Normal tissues in abdominal and pelvic regions are largely duplicated for various 
radiotherapy sites such as liver, pancreas, cervix, prostate, and rectum [206]. 
However, different sites have various treatment protocols (e.g., full vs. empty blad-
der), various patient orientation (e.g., supine vs. prone), and different organs for 
male/female patients (e.g., prostate, uterus). This makes the development of a ubiq-
uitous auto-segmentation tool very complicated. Instead, the auto-segmentation 
tools have been developed for each site/protocol [20].

In the abdominal region, liver and pancreatic cancers are commonly treated with 
radiotherapy. For liver cancer, auto-segmentation models were mostly developed 
for CT images as it is a major modality for radiotherapy. Ahn et  al. [207] used 
FusionNet [208] to auto-segment normal tissues for radiotherapy for liver cancer, 
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Fig. 11.15 Auto-segmented cardiac structures by Morris et al. [205] From left to right, the authors 
present the cases where the auto-segmentations were classified as worst, average, and best quality 
based on overlap and distance metrics when compared to the manual contours
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and achieved mean DSC values of 0.92, 0.93, 0.86, 0.85, and 0.60 for heart, liver, 
right kidney, left kidney, and stomach, respectively. Kim et  al. [209] used a 3D 
U-Net to auto-segment organs in the abdominal region and achieved mean DSC 
values of 0.96, 0.81, 0.60, 0.90, and 0.91 for liver, stomach, duodenum, right kidney, 
and left kidney, respectively. Tong et  al. [210] proposed a self-paced DenseNet 
architecture to develop an auto-segmentation model for eight abdominal structures, 
and achieved mean DSC values of 0.96, 0.95, 0.95, 0.89, 0.81, 0.79, 0.72, and 0.69 
for liver, spleen, left kidney, stomach, gallbladder, pancreas, esophagus, and duode-
num, respectively. Anderson et al. [211] developed an auto-segmentation model for 
the liver using DeepLabV3+ and achieved a mean DSC value of 0.96 for both con-
trast and non-contrast CT images. For pancreatic cancer, on the other hand, MRI 
helps delineate the tumors due to better soft-tissue contrast [212–214]; therefore, 
most of the auto-segmentation systems were developed for MR images, especially 
for online adaptive radiotherapy using MR-LINAC.  Fu et  al. [215] proposed a 
CNN-based architecture with the conditional random field as a post-processing 
method. They trained the architecture to auto-contour five normal tissues in the 
abdominal region for MRI-guided adaptive radiotherapy, and achieved mean DSC 
values of 0.95, 0.93, 0.87, 0.85, and 0.66 for liver, kidneys, bowel, stomach, and 
duodenum, respectively (Fig. 11.16). Liang et al. [216] used a multi-level fusion 
approach to auto-contour liver, left kidney, and right kidney for online adaptive 
MR-guided radiotherapy and achieved mean DSC values of 0.97, 0.90, and 0.86, 
respectively.

In the pelvic region, prostate, cervical, and rectal cancers are the most common 
cancer sites that are treated with radiotherapy. For prostate cancer, both CT and 
MRI are commonly used to delineate the tumors and normal tissues. Elguindi et al. 
[217] trained DeepLabV3+ to auto-segment organs on MRI of the male pelvis, and 

Fig. 11.16 MR-based auto-segmentation of abdominal organs at risk by Fu et al. [215] The top 
row shows auto-segmentations, whereas the bottom row shows the manually contoured organs at 
risk. ROIs contour include liver (blue), kidneys (green), duodenum (light blue), stomach (red), and 
bowels (yellow)
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achieved mean DSC values of 0.93, 0.83, 0.82, 0.81, 0.74, and 0.69 for bladder, 
prostate and seminal vesicles, rectum, rectal spacer, penile bulb, and urethra, respec-
tively. Dong et al. [218] synthetically generated MR images from CT images using 
cCycleGAN, then trained a deep attention U-Net with the synthetic MR images. 
They achieved mean DSC values of 0.95, 0.87, and 0.89 for bladder, prostate, and 
rectum, respectively. Balagopal et al. [219] used a 2D U-Net for organ localization 
and a 3D U-Net with ResNeXt blocks for organ segmentation on CT images, and 
achieved mean DSC values of 0.96, 0.95, 0.95, 0.90 and 0.84 for left femur, right 
femur, bladder, prostate, and rectum, respectively. Compared to prostate cancer, 
auto-segmentation studies on cervical and rectal cancer are relatively less common. 
Liu et al. [220] proposed a new CNN-based architecture that modified the U-Net by 
replacing the convolutional layers to Context Aggregation Blocks. They trained the 
modified U-Net to auto-segment six normal tissues for cervical cancer radiotherapy 
on CT images and achieved mean DSC values of 0.92, 0.91, 0.85, 0.83, 0.83, 0.79, 
for the bladder, femurs, bone marrow, small intestine, spinal cord, and rectum, 
respectively. Song et al. [221] trained DeepLabV3+ to segment normal tissues for 
rectal cancer on CT images and achieved mean DSC values of 0.90, 0.90, 0.76 for 
bladder, femurs, and small intestine, respectively. Furthermore, Men et  al. [222] 
studied the impact of patient orientation (i.e., prone or supine) on CNN-based auto- 
segmentation models for rectal cancer patients and demonstrated that a model 
trained from data combining both orientations works as good as a model trained on 
data from a single orientation on that specific orientation (Fig. 11.17).

11.6.2  Tumors and Clinical Target Volumes

11.6.2.1  Tumors
The gross tumor volume (GTV) is the gross demonstrable extent and location of the 
malignant growth where the tumor cell density is the highest [223]. The shape, size, 
and location of a GTV are often determined from a combination of various imaging 
techniques, such as X-ray, CT, various MRI sequences, and PET images. Defining 
the true GTV accurately and consistently is a major challenge in radiation treatment 
planning, because the GTV may appear in different size and shape on different 
imaging modalities. Depending on the availability of imaging examinations and the 
experience of the radiation oncologists, the defined GTV contours can vary greatly 
from one physician to the other. Even with multiple imaging examinations, it is still 
not rare to see significant inter-observer variation in GTV definition [224, 225].

The success of normal tissue auto-segmentation sparked the research of GTV 
auto-segmentation. However, auto-segmentation of the GTV is much more chal-
lenging than the normal tissue. Current state-of-the-art segmentation algorithms, 
such as the atlas-based, model-based, or deep learning-based methods, rely on the 
prior knowledge of the underlying structures/anatomy to be segmented [20]. The 
fundamental assumption here is that the structure to be segmented is similar from 
patient to patient, so that the existing knowledge (i.e., contoured patients) can be 
learned by the algorithm. This assumption is generally true for normal tissues. 
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Manual contours - CTV

Manual contours - Femurs
Manual contours - Bladder

Model from same orientation

Model from opposite orientation
Model from both orientations

Fig. 11.17 Illustration by Men et al. [222] highlighting under-performance of auto-segmentations 
when trained models used scans where patients were positioned supine, prone, or both. Including 
patients in both prone and supine positions resulted in better predictions than individual position 
(i.e., only supine cases) alone
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However, unlike the normal tissue, tumor is different from patient to patient in terms 
of size, shape, and location. In addition, the size and shape of the tumor can keep 
changing from day to day. This variation requires a complex model being built to 
segment the GTV, and training and building such a complex model is not straight-
forward. Furthermore, multiple modalities of images are often needed to accurately 
define the GTV. Auto-segmentation from multiple modality images adds additional 
complexity in creating the segmentation models [226, 227]. Nevertheless, active 
research has been carried out on GTV auto-segmentation and the current status is 
summarized according to anatomical site as follows.

Brain tumor segmentation is possibly the most widely investigated of all tumor 
sites, mainly due to the widely available benchmark datasets. A typical example is 
the BRATS, the multimodal brain tumor image segmentation benchmark [122]. 
Brain tumor segmentation is commonly performed using multiple MRI sequences. 
Occasionally, the CT image may be included. A nice review article has summarized 
the brain tumor segmentation of MRI images in recent years [228]. Of the methods 
summarized therein, the best performance was achieved by the DeepMedic with 
conditional random field (CRF) method, with a mean DSC value of 0.90 for whole 
tumor segmentation [92].

More recently, a lot more brain tumor segmentation methods have been pro-
posed, almost all using deep learning methods. Some most recent publications have 
shown a mean DSC value of 0.91, achieved by different groups using different deep 
learning architectures [229–231] (Fig. 11.18). On the other hand, researchers also 
investigated the detection and segmentation of brain metastases for stereotactic 
radiosurgery [232, 233]. The most recent study reported the detection accuracy with 
the area under the receiver operating characteristic curve (AUC) of 0.98 and the 
detection and segmentation accuracy with a mean DSC value of 0.79 [233].

Head and neck tumors are generally not visible on non-contrast CT. To define the 
GTV accurately for treatment planning, radiation oncologists often use a combina-
tion of MR (T1, T1c, and T2), CT, PET/CT, and/or dual energy CT images. In the 
last decades, most development for GTV auto-segmentation has been focused on 
PET or PET/CT image pair. Varied approaches have been proposed, including 
graph-cut [234, 235], Markov random field [236], random walk [237], decision tree 
[238], and k-nearest neighbor [239]. Two recent studies also proposed a 2D CNN 
and a 3D CNN to segment the GTV from PET-CT pair [240, 241]. Deng et al. pro-
posed a support vector machine method to segment the GTV from contrast-enhanced 
MRI [242]. The only multi-modality segmentation was proposed by Yang et  al. 
[243], by using the Markov random field and expectation-maximization algorithm 
to segment from PET-CT image pair, T1-weighted contrast MRI, and simulation CT 
image. A mean DSC value of 0.74 was achieved in the multi-modality 
segmentation.

Lung tumors are generally visible on CT, but its intensity is similar to normal 
tissue. Depending on the tumor location, segmentation directly from a CT image 
alone could be a straightforward process if the tumor is located in the middle of the 
lung. However, if the tumor attaches to the chest wall or mediastinum, it is often 
difficult to separate it from surrounding normal tissues. In this situation, using PET 
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together with CT can greatly improve the segmentation accuracy. Varied traditional 
segmentation approaches, mostly semi-automatic, have been developed to segment 
the lung tumor from PET or CT images. Representative approaches include single- 
click ensemble methods [244] and marker controlled watershed methods [245]. 
Most recently, there has been concerted effort on developing deep learning methods 
for lung tumor segmentation. For example, a multiple-resolution residual network 
(MRRN) was developed to segment lung tumors from CT images with a reported 
mean DSC value of 0.75 [246] (Fig. 11.19). A multimodal spatial attention module 
in combination with a CNN was developed to segment lung tumors from PET–CT 

Fig. 11.18 Brain tumor segmentation by Zhou et al. [230] on FLAIR MR scans. From left to 
right, the authors present the physician-approved segmentations with results from four different 
auto-segmentation models, with the furthest right column displaying auto-segmentations using the 
authors’ proposed approach. Contours include edema (green), necrosis and non-enhancing tumor 
(red), and the tumor core (blue)
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pairs with a reported mean DSC value of 0.71 [247]. Some other recently developed 
approaches have been presented at the 2020 SPIE Medical Imaging conferences 
[248, 249]. While MR is not often used for lung tumor segmentation, a recent study 
developed a deep learning approach to combine CT and MR for lung tumor segmen-
tation with a reported mean DSC value of 0.75 [250].

Not many studies investigated abdominal tumor segmentation or pelvis tumor 
segmentation, possibly due to the limited clinical usability, the difficulty to achieve 
a desirable result, and the limited availability of benchmark imaging datasets. A 
recent development applied a radiomics-guided GAN for segmentation of liver 
tumor from MR images [251]. On the other hand, a weakly supervised CNN method 
was proposed to segment renal tumor from abdominal CT angiographic images 
[252]. It is worth mentioning that a unified and end-to-end adversarial learning 

Fig. 11.19 CT-based lung tumor auto-segmentation by Jiang et al. [246] Manual contours (blue) 
and auto-segmentations (red) are displayed for six cases (rows) and six models (columns). Results 
from the authors’ proposed multiple-resolution residual network (MRRN) are displayed in 
column (f)

11 Auto-contouring for Image-Guidance and Treatment Planning



274

framework named CTumorGAN, consisting of a Generator network and a 
Discriminator network, has been developed specifically for tumor segmentation 
from CT images [253]. This segmentation method was tested with lung tumors, 
liver tumors, and kidney tumors and achieved mean DSC values of 0.71, 0.80, and 
0.84, respectively.

11.6.2.2  Clinical Target Volumes
Clinical target volume (CTV) definition is a complex task where the radiation 
oncologist decides which regions about the tumor would need to be targeted to 
receive radiation. Generally, the CTV consists of the GTV plus a margin extension 
which aims to cover any microscopic disease present that cannot be seen with cur-
rently available medical imaging devices [223]. Delineating the CTV is considered 
a more difficult task than normal tissue or GTV segmentation since it requires 
detailed knowledge of the surrounding anatomy and pathways of tumor spread. 
Adding to this complexity, several CTV levels are often used for specific treatment 
sites to deliver reduced doses to intermediate-, and/or low-risk disease spreading 
regions, such as lymph node levels of the head and neck and pelvic regions. Accurate 
and reproducible CTV delineation is very important in radiation oncology. As phy-
sicians rely on training and experience to manually delineate CTVs, this process can 
become subjective, and contours have the potential to greatly differ between physi-
cians [1, 254]. Auto-segmenting CTVs could address these issues by increasing 
consistency through systematic definition of these volumes [255].

When considering most cancer sites, CTVs can be defined based on their pri-
mary (CTVp) and/or nodal disease (CTVn). For many cases, CTVp can be defined 
as the GTV plus some margin extensions which may need to be corrected for ana-
tomical barriers of tumor invasion. Automatic CTV definition approaches should 
mirror this approach. Belshi et al. proposed a GTV-to-CTV margin expansion fol-
lowing rules posed by anatomical barriers where the barriers were manually defined 
[256]. More recently, Shusharina et al. developed a fully automatic GTV-to-CTV 
expansion approach for glioblastoma using deep learning-based auto-segmentations 
of adjacent anatomical barriers resulting in an automated workflow that allows for 
CTV definition that is consistent with neuroanatomy [257].

As discussed in Sect. 11.6.1, deep learning has been shown as a promising tool 
to auto-segment organs at risk for a variety of anatomical sites. These same models 
could be leveraged for CTVp delineation for radiotherapy treatment sites such as 
the prostate. Liu et al. [258] showed that auto-segmentation of the prostate on CT 
images was possible reporting mean DSC values of 0.85 between the auto- segmented 
and physician-drawn volumes. Elguindi et al. [217] showed similar results on MR 
images where they achieved mean DSC values of 0.83 for prostate radiotherapy 
CTVs (prostate + seminal vesicles). Anas et  al. showed feasibility of prostate 
brachytherapy CTV auto-delineation using transrectal ultrasound images achieving 
a mean DSC value of 0.94 [259]. Men et al. used a deep dilated residual network to 
automatically define intact breast for breast cancer radiotherapy achieving mean 
DSC values of 0.91 [260]. More recently, Schreier et al. used a densely connected 
3D U-Net to auto-segment the breast achieving median DSC values of 0.93 [203].
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Lymph node level segmentation through atlas-based approaches has been previ-
ously explored for head and neck [27, 261, 262], breast [263], pelvis [263], and the 
thorax [264]. More recently, deep learning-based approaches have been investigated 
to further improve the accuracy of the resulting auto-segmentations. For head and 
neck, Cardenas et al. [145] developed a model that can auto-delineate lymph node 
level target volumes (Fig. 11.20) providing physicians with several target coverage 
options (i.e., coverage options include combinations of lymph node levels: Ia 
through V, Ib through V, II through IV, and retropharyngeal nodes) with high agree-
ment to the physician contours (mean DSC value of 0.89 for all target volumes). 
Furthermore, the authors showed through a multi-institutional evaluation of the 
auto-delineated target volumes that 99% of target volumes reviewed could be used 
without risk by treating physicians. Rhee et  al. [144] developed a deep learning 
model to auto-segment cervical cancer CTVs and organs at risk (Fig. 11.21) and 
achieved mean DSC values of 0.81 and 0.76 for pelvic and paraaortic lymph nodes, 
respectively. Upon physician evaluation, the authors report that 70% and 87% of 
auto-delineated pelvic and paraaortic lymph node CTVs, respectively, were clini-
cally acceptable without requiring significant manual edits. Several works report 
promising results for deep learning-based rectal cancer CTV definition using a sin-
gle ROI to provide coverage for CTVp and CTVn. Men et al. used a 2D deep dilated 
CNN to auto-delineate rectal cancer CTV and reported mean DSC values of 0.88 for 
target volumes [265]. Similar results (mean DSC value of 0.88) were achieve by 
Song et al. using the DeepLabV3+ architecture [221].

The above paragraphs introduce segmentation problems where the tasks focus on 
anatomical structures rather than tumors. For many sites, tumor location, size, and 
invasion of surrounding anatomy mandate potential pathways of disease spread. 
Deep learning offers an advantage over previously developed techniques as it could 
potentially identify CTV delineation patterns from prior treated volumes based on 
the location of the GTV. Men et al. and Cardenas et al. demonstrated that delineation 
patterns could be captured and used to automatically define low-risk CTVs for naso-
pharyngeal [266] and oropharyngeal [267] cancer patients, respectively. Similarly, 
Cardenas et al. [143] developed a deep learning model to auto-delineate high-risk 
CTVs for oropharyngeal cancer patients achieving mean DSC values of 0.81. Jin 
et al. investigated the use of adjacent anatomical structures to provide spatial context 
to a deep network to auto-delineate esophageal CTVs [268]; in this work, the authors 
report a mean DSC value of 0.84 for these CTVs. Post-operative definition of CTVs 
brings additional challenges as the original tumor is no longer present, and there is 
the possibility of drastic anatomical changes due to the surgical procedure. Balagopal 
et al. developed a 3D deep network which localizes and then segments post-operative 
CTVs for prostate cancer radiotherapy reporting mean DSC values of 0.87 for the 
auto-delineated CTVs [269]. Bi et al. showed improved consistency in CTV delinea-
tion for post-operative non-small lung cancer patients when compared to junior fac-
ulty delineations achieving a mean DSC value of 0.75 for auto-delineated CTVs (vs. 
0.72 for manual contours) [270]. The ability of deep learning-based auto-segmenta-
tion approaches to identify and replicate delineation patterns from prior radiotherapy 
cases is promising in advancing the use of computational models for CTV delineation.
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Fig. 11.20 Deep learning-based auto-segmentation of lymph node level target volumes by 
Cardenas et al. [145] Each panel displays a CT slice on a test patient; here, target volumes for 
lymph node levels Ia-V (yellow), levels Ib-V (blue), levels II-IV (red), and retropharyngeal nodes 
(RP, green) are shown for each slice
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11.7  Conclusion

Auto-segmentation has gone through many advances over recent decades. Many of 
the techniques from the first- and second-generation algorithms are still in use 
today due to their simplicity and ease of use. The third-generation techniques, par-
ticularly atlas-based contouring, have become almost ubiquitous, with most com-
mercial and many open-source systems offering atlas-based auto-contouring 
solutions. Recently, with computing and algorithmic advances, deep learning tech-
niques have become the state-of-the-art in medical image segmentation moving the 
field into the fourth generation of auto-segmentation technique development. Deep 
learning techniques vary from CNNs to FCNs to GANs and more. Algorithm 
development has been very rapid with novel architectures and auto-segmentation 
strategies emerging often and beating out others in auto-contouring challenges. 
Relatively recently, image segmentation moved from using 2D inputs to 3D vol-
umes with deep learning. The deep learning techniques have been applied to auto-
segment targets and normal tissues in many anatomical sites including the thorax, 
abdomen, pelvis, head and neck, and brain with some applications producing bet-
ter results than the measured inter- and intra-observer contouring variability. 
Additionally, deep learning has been shown to contour tumors and CTVs showing 
where treatment planning in radiotherapy is likely headed. These deep learning 
systems are still in their relative infancy compared to other techniques, but their 
impressive results and ever increasing use will lead to increased availability (com-
mercial and open-source) of deep learning-based auto-segmentation tools for 
radiotherapy treatment planning, as well as increased acceptance and implementa-
tion of auto-segmentation tools in clinical practice. For all types of 

Primary CTV

No
edits

Minor
edits

Major
edits

Bladder Rectum

Fig. 11.21 Illustration from Rhee et  al. [144] highlighting cases whose auto-segmentations 
required no edits, minor edits, or major edits after physician visual inspection. For primary CTVs, 
the authors report that 83% of auto-segmentations were scored as clinically-acceptable when con-
sidering minor/stylistic edits
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auto-segmentation, commissioning and periodic QA of these systems is vital in 
ensuring patient safety and proper use of the systems. Particularly with the perfor-
mance of deep learning-based auto-contouring techniques, we may be approaching 
the end of manual segmentation as auto-contouring solutions provide much more 
reliable contours compared to the manual inter- and intra-observer contouring vari-
ability and significantly reduce the time to produce a radiotherapy treatment plan 
making online adaptive radiotherapy more feasible.
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12.1  Introduction

Radiotherapy delivery is a complex process which requires QA testing at each step in 
order to prevent errors and ensure the prescribed treatment is received correctly by the 
patient. This chapter will review the application of machine learning to radiotherapy 
QA. Machine learning, as it refers to the automated detection of meaningful patterns 
in data, has become a major area of research and a common tool in many processes in 
radiotherapy [1]. Simultaneously, the number of daily QA tasks performed by medical 
physicists has increased, and high importance has been set to prioritizing those most 
associated with delivering the safest treatment by the American Association of 
Physicists in Medicine (AAPM) Task Group 100 [2]. It therefore follows that as more 
complex treatments are adopted, learning from QA data to identify those tasks that 
require early intervention becomes increasingly crucial to our profession. However, 
QA data are currently only utilized to decide whether a specific test result falls within 
the given specifications. This chapter hopes to demonstrate the power of machine 
learning and the advantages it can offer in QA programs.
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12.2  Overview of the Use of Machine Learning in Quality 
Assurance and Treatment Delivery

Machine learning is well suited to analyzing multiple elements of a radiotherapy 
QA program. As a brief overview, the performance of linear accelerators (Linac) 
over time have been predicted by Li et al. [3]. More specifically, Carlson et al. used 
machine learning to predict the positional errors of the multi-leaf collimator (MLC) 
[4]. Valdes et al. were able to automatically detect problems with the Linac imaging 
system [5] and also continued to develop an ML method to predict IMRT QA pass-
ing rates [6, 7]. More broadly, El Naqa et al. developed an anomaly detection system 
to model QA errors and rare events in radiotherapy [8], and Ford et al. quantified the 
error detection efficiency of radiotherapy quality control checks [9]. These exam-
ples have demonstrated the ability of machine learning algorithms to identify QA 
cases that demand closer investigation as recommended by Task Group 100 [2]. 
This chapter will now discuss the application of machine learning to automated 
chart review, Linac QA, and IMRT QA in more detail.

12.2.1  Automated Chart Review

Medical physicists are tasked with verifying the integrity of each plan before it is 
delivered to the patient and through its course of treatment in a task commonly 
known as chart review. These reviews occur before the first fraction is delivered to 
the patient and then every week until the final treatment verification is performed. 
The AAPM Task Group 275 reviews this process and offers recommendations [10]. 
This task group report highlights different aspects of the plan that need to be checked 
before the plan is delivered: technical parameters and data transfer from the 
Treatment Planning System and the Treatment Console, calculation accuracy, image 
guidance, plan quality, and consideration of technical clinical factors. This check is 
highly important, and it constitutes the last safeguard against many mistreatments as 
33% of near-miss incidents originate during the treatment preparation process [11]. 
However, due to the repetitive nature of the task and the overwhelming information 
needed to be processed by the reviewer, only 25–38% of all detectable errors are 
actually identified by the physicists [12, 13]. As such, the use of machine learning 
to help physicists perform this task is a natural and important application. Some 
examples include the use of clustering methods to detect outliers based on plan 
comparisons [14, 15] and Bayesian network architectures to detect those links in the 
workflow that are more likely to introduce errors [16].

12.2.2  Machine Learning Applied to Delivery Systems

This section will now focus on the application of machine learning for Linac 
QA. One element of the Linac that can have a major impact on the dose delivery is 
the multi-leaf collimator (MLC). Discrepancies in MLC positions were first 
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predicted using machine learning techniques by Carlson et al. [4] Leaf position and 
speed were calculated as predictive leaf motion parameters for the models in this 
study. The positional differences between the DICOM-RT files and the DynaLog 
files was used as the target to train ML models. The authors used three machine 
learning algorithms—linear regression, random forest, and a cubist model, with the 
cubist model performing best in terms of accuracy. In the future, these predictions 
could be incorporated into the treatment planning system to enable clinicians to 
visualize a more realistic dose distribution.

A machine learning model was developed by Chuang et al. to predict MLC dis-
crepancies during delivery using prior trajectory log files [17]. Using a workflow 
that extracted discrepancies and mechanical parameters from these log files, the 
authors built multiple machine learning models including linear regression, deci-
sion tree, and ensemble methods to predict these discrepancies.

Separately to MLC discrepancies, the performance of the Linac over time has 
been predicted by Li and Chan by applying ANN time-series prediction modeling to 
longitudinal daily Linac QA data over a 5-year time period [3]. The network archi-
tecture was formed using a trial-and-error process which resulted in a set of one 
hidden layer, six hidden neurons, and two input delays. A benchmark autoregressive 
integrated moving average (ARIMA) model was used for comparison and was 
found to be less accurate than the new ANN time-series model.

More recently, QA results that were outside the suggested AAPM Task Group 
142 tolerance limits were detected by Naqa et  al. using a Support Vector Data 
Description approach on 119 EPID images from 8 Linacs [8]. Recently, equally 
important work on predicting different QA aspects of proton therapy is starting to 
emerge. In this case, usually predicting output from the proton machines is also 
intrinsically associated with patient-specific QA. Sun et al. developed a machine 
learning algorithm based on ensemble methods to predict monitor units for a com-
pact proton machine. These models outperformed previously developed empirical 
approaches [18]. Additionally, Grewal et al. used a machine learning-based approach 
to predict outputs in uniform scanning proton therapy. The authors concluded that 
models that used machine learning outperformed previous models developed using 
empirical equations [19]. Table 12.1 lists recent studies applying ML methods to 
Linac QA that are discussed in this section.

12.2.3  Machine Learning Applied to IMRT QA

The section will focus on the application of machine learning to IMRT QA. The 
general workflow extracts features from each treatment plan and computes many 
complexity metrics which are associated with passing rates. Models are built using 
these features to predict passing rates for new plans.

The first such virtual IMRT QA model using machine learning was developed by 
Valdes et al. using 498 clinical IMRT plans from the University of Pennsylvania 
with associated QA passing rate results obtained using a MapCHECK (Sun Nuclear 
Corporation, Melbourne, FL) QA device [6]. A further data set of 203 clinical IMRT 
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plans was obtained from Memorial Sloan Kettering Cancer Center with associated 
QA passing rates acquired in this case using portal dosimetry [7]. All plans from 
both the data sets were planned in Eclipse (Varian Medical Systems, Palo Alto, CA). 
Parameters were automatically extracted for each IMRT beam from Eclipse using 
SQL queries. MLC positions and collimator rotations were extracted using scripts. 
Features were calculated for each beam by developing MATLAB functions (The 
MathWorks Inc., Natick, MA). A machine learning algorithm was trained to learn 
the relationship between the plan characteristics and the passing rates. The learning 
curve for the initial model demonstrated that approximately 200 composite plans 
are required for sufficient training. The learning curve for the portal dosimetry 
model showed that approximately 100 IMRT fields are sufficient for training a reli-
able model if the original model trained at the University of Pennsylvania is used as 
the starting point.

For the MapCHECK data, 78 features were extracted, and the most important 
features included the fraction of area delivered outside a circle with 20 cm radius (to 
capture symmetry disagreements), duty cycle, and fraction of opposed MLCs with 
aperture smaller than 5 mm (to quantify the effects of rounded leaves in the MLC). 
For the portal dosimetry data, an additional 10 features were calculated to account 
for the characteristics of portal dosimetry, and the important features included the 
CIAO area, the fraction of MLC leaves with gaps smaller than 20 or 5 mm, and the 
fraction of area receiving less than 50% of the total calibrated MUs.

There was a strong correlation between the MapCHECK measured QA passing 
rate and the predicted passing rate using the virtual IMRT model using data that had 
not previously been seen. All passing rate predictions were within a 3% error. Even 

Table 12.1 Summary of studies on machine QA using machine learning techniques

Group
QA 
source Data set ML model Task

Carlson et al.,
PMB, 2016 [4]

DICOM_
RT,
Dynalog 
files

74 VMAT 
plans

Regression, 
random Forest, 
cubist

MLC position errors 
detection

Li & Chan,
AMLS, 2017 [3]

Daily QA 
device

5-year daily 
QA data

ANN time-series, 
ARMA models

Symmetry prediction

Sun et al., Med 
Phys, 2018 [18]

Ion 
chamber

1754 proton 
fields

Random Forrest, 
XGboost, cubist

Output for a compact 
proton machine.

Naqa et al.,
Med Phys, 2019 [8]

EPID 119 images 
from 8 Linacs

Support vector 
data description, 
clustering

Gantry sag, radiation 
field shift, MLC offset

Chuang et al.,
Med Phys, 2021 
[17]

Trajectory 
log files

116 IMRT 
plans,
125 VMAT 
plans

Boosted tree 
outperformed LR

MLC discrepancies 
during delivery & 
feedback

Grewal et al., Med 
Phys, 2020 [19]

Ion 
chamber

4231 proton 
fields

Gaussian 
processes and 
shallow neural 
networks

Proton output and 
patient QA
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though passing rates are dependent on the site, different models were not built for 
the University of Pennsylvania and Memorial Sloan Kettering Cancer Center 
because, conditional on plan characteristics, this dependency disappears.

Implementation of virtual IMRT QA clinically requires the following workflow: 
(1) collect or extract IMRT QA data, (2) extract parameters of the IMRT fields from 
plans, (3) extract features and calculate complexity metrics, (4) apply a machine 
learning algorithm to build a predictive model. The most important features to pre-
dict passing rate should also be identified and can inform the physicists of possible 
failure modes that need to be addressed to tight up the QA program.

This process requires calculating features that correlate between the plan charac-
teristics and passing rates. Interian et al., from the Valdes group, compared their 
own Poisson regression model using the same QA data to a model built using a 
Deep Neural Network capable of designing its own features [20]. Fluence maps for 
each plan were used as input to the convolution neural network (CNN), a special-
ized neural network for image analysis, and the models were trained using 
TensorFlow and Keras to predict QA passing rates. The CNN and virtual IMRT QA 
predictions were comparable even though the virtual IMRT QA model used features 
designed by physics experts. The authors concluded that CNNs with transfer learn-
ing can predict IMRT QA passing rates by automatically designing features from 
the fluence maps without human expert supervision.

In another study to predict IMRT QA gamma evaluation results, Tomori et al. 
applied deep learning methods to 60 IMRT QA plans [21]. Fifteen-layer convolu-
tional neural networks were developed to learn the planar dose distributions from a 
QA phantom, and EBT3 film was used to measure the gamma passing rate. The 
volume of PTV, rectum, and overlapping region, and the monitor unit for each field 
were included as input to the model. The CNN was built using fivefold cross- 
validation to predict gamma passing rates at various criteria: 2%/2 mm, 3%/2 mm, 
2%/3 mm, and 3%/3 mm. A linear correlation was found between measured and 
predicted values for all criteria which suggests that deep learning methods can pre-
dict gamma evaluation results for IMRT QA.

Deep learning can also be used to classify potential treatment delivery errors as 
demonstrated by Nyflot et al., who exported three sets of planar doses from QA 
plans corresponding to the error-free case, a random MLC error case, and a system-
atic MLC error case [22]. The plans were delivered to an EPID panel, and the EPID 
dosimetry software was used to perform gamma analysis. Two radiomic approaches 
(image features using a CNN and human-designed texture features) were used to 
identify metrics for input into four ML classifiers which were used to determine 
whether the images contained errors. The CNN performance was superior to the 
texture feature approach, and both the radiomic approaches were superior to using 
the gamma passing rate in their ability to predict clinically relevant errors.

Another approach to predicting results of VMAT QA measurements was used 
by Granville et  al. which incorporated both treatment plan characteristics and 
Linac performance metrics [23]. This study used a support vector classifier (SVC) 
with the model output classes representing the median dose difference (±1%) 
between measured and expected dose distributions rather than passing rates. 
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During development of this model, unimportant features were removed using a 
recursive feature elimination (RFE) technique with cross-validation. The ten most 
important features for prediction consisted of five features representing treatment 
plan characteristics and five features representing Linac performance metrics. This 
model demonstrated the potential of using both machine and plan characteristics to 
predict QA results.

Delivery characteristics can also impact the dose accuracy of treatment plans. Li 
et al. extracted ten metrics from 344 QA plans and found that leaf speed is the most 
important factor affecting the accuracy of gynecologic, rectal, and head and neck 
plans [24]. They also found that the field complexity, small aperture score, and MU 
are the most important factors influencing the accuracy of prostate plans. Li et al. 
also explored the accuracy of VMAT QA result prediction using machine learning 
to build two prediction models: the classic Poisson regression model and a new 
Random Forest classification model [25]. The model performance was assessed 
under different gamma criteria and action limits with tenfold cross-validation on 
255 VMAT plans. An independent validation set of 48 VMAT plans was used to 
validate these models without cross-validation. The accuracy of the prediction was 
greatly affected by the absolute value of the measured gamma passing rates and 
gamma criteria. Even though the passing rates for the majority of VMAT plans were 
accurately predicted by the regression model, the classification model had a much 
better sensitivity to accurately detect failed QA plans. Lam et al. applied tree-based 
machine learning models consisted of 1269 IMRT beams to improve the prediction 
accuracy of portal dosimetry at 2%/2 mm gamma criteria with a 5% threshold [26]. 
Later the same group of Li et al. [25] continued their work and improved on their 
model by using autoencoder-based classification-regression (ACLR) to generate 
GPR predictions for three different gamma criteria with 54 complexity metrics as 
input to the model [27]. This hybrid model was able to improve prediction accuracy 
over the classic Poisson Lasso regression model.

The validity of virtual IMRT QA was once again shown by Hirashima et al., who 
created a model to predict ArcCHECK measurements using plan complexity and 
dosiomic features as input to Gradient Boosting, considered the most accurate algo-
rithm to date for the analysis of tabular data [28]. Table 12.2 summarizes the studies 
discussed in this section on virtual IMRT/VMAT QA in chronological order.

12.3  Future Directions

Radiation treatments are complex and require an extensive QA process to guarantee 
that they can be safely delivered to patients. With the increasing complexity of these 
techniques, the number of QA tasks that need to be implemented have grown expo-
nentially. This has prompted the American Association of Physics in Medicine to 
propose, through Task Group 100, the prioritization of those tasks that are most 
important to guaranteeing the safe delivery of radiation therapy. Machine learning 
techniques, with their natural mechanism to process large amount of data, appear to 
be a valuable companion to facilitate QA tasks. Extensive demonstrations have been 
cited within this chapter exemplifying their use. They can be used to detect outliers 
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and alert physicists to take proactive actions and make informed decisions about 
those plans and the aspect of QA that require immediate attention. However, it is 
important to note that in the ever-changing world of radiotherapy, it is likely that the 
accuracy of these algorithms created to detect errors would decrease with time. As 
such, they should only be used to assist the physicists and facilitate the task and not 
as a replacement for human supervision. Additionally, the mechanisms and guide-
lines to perform QA on these algorithms are lacking and more work is needed to 
ensure a safe transition into ML-assisted QA programs.

Most machine learning application to QA has been to predict QA passing rates 
using a variety of methods. It is important to gain a full understanding of all contrib-
uting factors to delivery accuracy and QA failures in order to be able to implement 
a risk-based program as suggested in the AAPM TG-100 report. Future develop-
ment could allow for the inclusion of QA predictions in the treatment planning 
system, so that the optimizer can ensure a passing QA result. This would allow 

Table 12.2 Summary of studies on patient-specific QA using machine learning techniques

Group
TPS/
delivery QA tool

Data 
source ML model

Research 
highlight

Valdes et al.
Med Phys, 
2016 [6]

Eclipse/
Varian

MapCHECK2 498 
IMRT
Plans

Poisson 
regression

Founding paper

Valdes et al.
JACMP, 2017 
[7]

Eclipse/
Varian

Portal 
dosimetry

203 
IMRT
Beams

Poisson 
regression

Multi-sites 
validation

Interian et al.
Med Phys, 
2018 [20]

Eclipse/
Varian

MapCHECK2 498 
IMRT
Plans

Convolutional 
neural network

Fluence map as 
input

Tomori et al.
Med Phys, 
2018 [21]

iPlan/
Varian

EBT3 film 60 IMRT
Plans

Convolutional 
neural network

Planar dose, 
volumes, MU

Nyflot et al.
Med Phys, 
2019 [22]

Pinnacle/
Elekta

EPID 186 
IMRT
Beams

Convolutional 
neural network

Image, texture 
features

Granville et al.
PMB, 2019 
[23]

Monaco/
Elekta

Delta4 1620 
VMAT 
beams

Support vector 
classifier

1st VMAT & 
w/QC metrics

Li et al.
Red Journal, 
2019 [24]

Eclipse/
Varian

MatriXX 248 
VMAT 
beams

Poisson lasso & 
random forest

Specificity & 
sensitivity

Lam et al. Med 
Phys, 2019 
[26]

Eclipse/
Varian

Portal 
dosimetry

1269 
IMRT 
beams

Ada-boost, RF, 
XGBoost

High accuracy 
at 2%/2 mm, 
5% TH

Wang et al.
PMB, 2020 
[27]

Eclipse/
Varian

MatriXX 400 
VMAT 
beams

Hybrid model
ACLR

High prediction 
accuracy

Hirashima 
et al.
RO, 2020 [28]

Acuros/
collapsed 
cone

ArcCHECK 1255 
VMAT 
plans

XGBoost Plan 
complexity & 
dosiomics
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physicists to concentrate on running QA tests only on those plans with the lowest 
expected passing rates. A clinically implemented ability to predict QA results would 
have profound implications on the current treatment workflow and corresponding 
time to treatment for our patients.
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13Knowledge-Based Treatment Planning

Jiahan Zhang, Yaorong Ge, and Q. Jackie Wu

13.1  Introduction

Radiation therapy is a widely adopted and effective cancer treatment modality that 
leverages highly advanced and complex technologies. With the advent of intensity 
modulated radiation therapy (IMRT), physicians have a tremendous opportunity to 
maximize cancer control while minimizing toxicity to normal organs. However, 
achieving this inherently contradicting goal using IMRT requires extensive knowl-
edge, experience, and time due to the complexity of technologies and the limitations 
in our understanding of patient conditions.

To tackle the challenges of radiation therapy, knowledge-based systems have 
been developed as early as 1980s to aid the design of radiation treatment plans [1, 
2]. The knowledge-based systems reported during that period refer mainly to expert- 
based systems that aim to capture clinician knowledge and experience in terms of 
rules and algorithms. These rule-based approaches in recent years have led to a type 
of system that is commonly called “automatic (or automated) planning systems” 
(e.g., [3–5]). These systems aim to encode sophisticated planning knowledge that 
human planners have acquired through their planning experience into complex and 
often iterative algorithms to generate clinically optimal IMRT plans automatically. 
Note that these automatic planning systems and the earlier form of knowledge- 
based systems are not data-driven in the sense that their main algorithms are based 
on direct encoding of human knowledge and do not rely on predictive models that 
are based on a database of prior planning data.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83047-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-83047-2_13#DOI
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As IMRT experience and especially the carefully designed clinical plans are 
accumulated over the past two decades, a new set of data-driven methods have been 
developed in recent years with an aim to improve the quality and efficiency of IMRT 
planning by learning from the past high-quality clinical plans. The term “knowledge- 
based planning” or simply KBP has now frequently been used to refer to this spe-
cific class of data-driven approaches to IMRT planning. Some of this development 
has led to commercial products recently and allowed the investigation of KBP in 
numerous clinical applications. This has somewhat solidified the narrower defini-
tion of KBP that draws knowledge from a database of prior clinical plan data and 
assumes that other sources of knowledge, such as treatment trade-off and clinician 
experience, are embedded in the design of prior clinical plans. We note that recent 
studies [6] have strongly affirmed this assumption and highlight a potentially sig-
nificant advantage of the data-drive KBP approach over automatic planning systems 
because sophisticated clinician experience such as trade-off decisions is difficult to 
encode into rules or algorithms.

At the center of the KBP technologies is the KBP models that predict the plan 
parameters (e.g., dose volume constraints, optimal beam angles, and fluence maps) 
that are best achievable for each patient. Since the KBP models are learned from 
high-quality prior plans created and delivered at a clinical entity (e.g., one cancer 
center or many cancer centers in a clinical trial), the predicted plan parameters 
reflect what are best achievable by the collective knowledge of the clinical entity 
and thus are in a sense optimal for the patients. Here lies a potential limitation of the 
KBP approach, that is, the quality of KBP may be limited by the quality of prior 
plans used to build the KBP models. This limitation has been addressed in a number 
of ways. To ensure that prior plans are of the highest quality before a KBP model is 
built, we can leverage the KBP technology to iteratively improve the overall quality 
of the prior plan database. Another solution is to focus on improving the overall plan 
quality of many centers with diverse resources by leveraging KBP models that are 
built on plans created by most experienced planners.

The plan parameters predicted by KBP models can be of many different types 
and forms. Due to relatively small training datasets, early models tend to predict 
summary dose parameters such as the dose volume histogram (DVH). Various 
approaches to predicting voxel level dose distribution [7, 8] have been attempted 
with limited success. With the advent of deep learning models in recent years, voxel 
level dose prediction has made significant progress in a number of cancer sites [9–
11]. Moreover, direct prediction of fluence maps has also shown promising results 
[12–14]. Another important type of KBP models aims to predict the beam configu-
rations. These models are essential for complex cancer cases where simple geome-
try with fixed and co-planar beam angles is not sufficient [15].

The development of KBP technologies faces many challenges. This is in part 
reflected in the fact that almost every modeling and machine learning technique has 
been applied to the development of various KBP models. One challenge that is 
becoming less prominent, but is still significant, is the lack of high-quality prior 
plan. This lack of data has required researchers to explore atlas-based models and 
other similarity-based machine learning approaches. It has introduced the need for 
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incremental learning as new plan data continue to accumulate and has also intro-
duced the challenge for handling outliers because new plan data may come from 
very different type of patients and potentially with variable plan quality. Another 
major challenge in KBP modeling is the large number and complexity of the factors 
that are involved. Given the limited data samples, this challenge cannot be addressed 
simply by increasing the complexity of the models. Thus, careful design of model 
architecture that can tease out variations in the data samples [16–18] and proper 
design of features that can effectively extract predictive factors [19, 20] are often 
important tasks in developing successful KBP models. Finally, KBP is not just dose 
models or beam models. A successful KBP technology requires a complete and 
efficient planning workflow that seamlessly integrates multiple models, algorithms, 
and also planner input.

In the following sections, we will discuss some of the challenges of KBP devel-
opment in more detail and introduce examples of solutions that effectively address 
these challenges.

13.2  Anatomical Feature-Based KBP Model

During IMRT treatment planning, the physician assigns organ-at-risk (OAR) dose 
constraints based on patient-specific anatomy and disease-specific considerations. 
The planner then sets optimization constraints in the TPS to achieve those con-
straints and make additional efforts to spare OARs as much as possible without 
compromising target coverage. This process is highly subjective and may introduce 
unnecessary plan quality variations. A data-driven approach has been developed to 
reliably predict the best achievable OAR dose sparing using knowledge embedded 
in previous treatment plans [19]. In this approach, we establish the correlations of 
OAR dose volume histograms (DVHs) and anatomy features for previously treated 
patients and use the correlation relationship to predict best achievable DVHs and 
guide treatment planning.

13.2.1  Distance to Target Histogram

DVHs are essentially one-dimensional representations of three-dimensional dose 
distributions. The reduced dimension makes DVH curves useful in interpreting 
OAR toxicity quantitatively. Similarly, to predict OAR DVHs, we need to first find 
low dimension representations of the spatial relationships between OAR voxels and 
the PTV.  Considering that the primary predictor for dose distribution inside the 
patient is the distance from the PTV, we define the distance to target histogram 
(DTH) as a histogram of OAR volume fractions within certain distances from the 
PTV surface. The Euclidean form of the distance function r from an OAR voxel 
vOAR

i to the PTV surface, r(vOAR
i, PTV) is

 
r v PTV v v v SOAR

i

k OAR
i

PTV
k

PTV
k

PTV,( ) = − ∈{ }min .  
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Negative signs are assigned to the distance values for OAR voxels inside PTV. To 
improve the correlation of DTHs to DVHs, a modification to the Euclidean distance 
is made to account for the slower dose fall-off in the regions far away from the 
PTV. First, the voxel vPTV

min  on PTV surface which is closest to vOAR
i is located. The 

Euclidean distance r(vOAR
i,PTV) is then reduced by a factor α (α < 1) when the OAR 

voxel vOAR
i is outside a axial cutoff distance rXY

cutoff from vPTV
min ,

 
′( ) = ( )r v PTV r v PTVOAR

i
OAR

i, ,α ,  

where r'(vOAR
i, PTV) is the modified distance.

13.2.2  Model Training and Validation

DTHs and DVHs are both continuous functions, and it is difficult to model DVHs 
directly as a function of DTHs. To effectively correlate the variations of DVHs to that 
of DTHs, principal component analysis (PCA) is applied to both type of histograms 
to reduce their dimensions. With PCA, much of the variability of the histograms can 
be explained by a small number of principle components. In particular, the first three 
components of the principal component scores (PCS) are selected as anatomical fea-
tures. Additional anatomical factors, including OAR volume, PTV volume, fraction 
of OAR volume overlapping with PTV volume, and fraction of OAR volume outside 
the treatment fields, are combined with DTH PCS to form feature vectors.

One of the earliest KPB models studied at Duke University Medical Center used 
88 prostate IMRT plans from the clinical database. The dose prescriptions for these 
patients are identical: the PTV enclosing the prostate and the seminal vesicles plus 
a standard margin of 5 mm is prescribed to 54 Gy, and the PTV enclosing the pros-
tate is boosted to 76 Gy. These clinical plans were generated using the institutional 
prostate IMRT planning protocol with seven standard coplanar 15 MV beams at: 
205°, 255°, 310°, 0°, 50°, 105°, and 55° gantry angles. Among these plans, 64 prostate 
patients are selected for training purpose and the remaining 24 prostate plans are 
reserved for validation.

The training workflow is summarized in Fig. 13.1. After data extraction and pre-
processing, DVH PCS are fitted to anatomical features. To quantitatively establish 
the correlations, stepwise multiple regression method is utilized. The stepwise 
regression method selects the most significant feature to the model by the coeffi-
cient of partial determination, which measures the correlation between that factor 
and the DVH variation not explained by the factors already included in the model. 
The result of the training process is a KBP model consisted of regression coeffi-
cients and the DTH/DVH PCA basis vectors. The model can then be used to predict 
OAR DVHs for future patients.

Following the flowchart shown in Fig. 13.2, the DVHs of bladder and rectum for 
plans in the validation datasets are calculated by the regression model trained by the 
training dataset. These model-predicted DVHs are compared to their corresponding 
DVHs in the actual clinical plans to assess the effectiveness of the factors identified 
in the study. If the factors used in the trained regression model capture significant 
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portion of the interpatient OAR dose sparing variation, the model should be able to 
predict the DVHs in the validation datasets. The comparison of DVHs for a subset 
of the validation plans are shown in Fig. 13.3.

To quantify the level of agreement between the modeled DVHs and the actual 
plan DVHs, specific dose–volume parameters are analyzed. For the prostate valida-
tion plans, the volumes corresponding to 99%, 85%, and 50% of the prescribed dose 
in the modeled plans are compared with those values in the actual plans. For both 
the bladder and rectum, 17 out of 24 plans (71%) are within 6% error bound and 21 
(85%) are within 10% error bound.

13.3  A Robust Ensemble Model with Outlier 
Filtering Mechanism

Forward selection, a type of stepwise regression, is used in the model discussed in 
Sect. 13.2. It finds the most significant features to add step by step, hence the name. 
The selected features are fitted to the data with ordinary least square, while the rest 
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Fig. 13.1 The workflow of the KBP training process
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of the features are discarded. There are some potential issues about this procedure, 
resulting in instabilities of the model training process. To address the model robust-
ness issue and make KBP modeling more accessible to clinical environments, we 
developed an ensemble model [18] that takes advantage of various modeling meth-
ods and has a built-in outlier filter mechanism.

Treatment
planning system
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DVH
reconstruction

Principle
component

analysis

Distance-to-target
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Fig. 13.2 The workflow of a KBP prediction
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13.3.1  An Ensemble KBP Model

We first formulate the KBP model regression and describe four types of regression 
models, including ridge regression [21, 22], lasso [23], elastic net [24], and stepwise 
regression. These models also serve as base learners for the final ensemble model. 
The first three models share the same objective function

 
β β ϕ β= − + ( ){ }argmin ,Y X

2

2

 

where X ∈ ℝN × P denotes P feature value from N training cases, Y ∈ ℝN denotes 
OAR DVH principle component scores (PCS) of cases in the training set, and 
β ∈ ℝP denotes regression coefficients corresponding to P anatomical features, such 
as PCS of distance-to-target histogram (DTH). The last term, known as the penalty 
term, balances the bias and variance of the trained model. The goal of KBP is to 
obtain regression coefficients β based on cases previously planned by experienced 
planners, and when a new case needs to be planned, the optimal OAR DVH can be 
calculated simply using the model predicted PCS of Xβ. In ridge regression, the 
penalty term φ(β) is the square of ℓ 2-norm of the regression coefficients β; in lasso, 
the penalty term is the ℓ 1-norm of β; and in elastic net, the penalty term is simply a 

linear combination of ℓ 1-norm and ℓ 2-norm squared: ϕ β λ β λ β( ) = +1 1 2 2

2
.

In different settings, different regression models perform well, and none of these 
models consistently perform better than other models. Therefore, to improve model 
consistency, we present an ensemble model that combines the aforementioned indi-
vidual models using a model stacking method. A previous study demonstrated that, 
even stacking ridge regression models alone with different penalty weight λ 
improved model generalization performance, and stacking models with different 
characteristics generated further improvement [25]. The ensemble approach is 
shown in Eqs. (13.1–13.3).

 z x k Kkn k n= =β , ,1  (13.1)
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(13.3)

First, individual models βk, where k ∈ [1, K] denotes individual model index, 
are trained separately on the training dataset repetitively with all the training data 
except for case n. Prediction of the in-training-set but out-of-model case zkn is then 
generated. The process is repeated until all the models have covered all cases in 
the training set. Subsequently, the model weights αk

∗  are optimized to minimize 
internal cross-validation error. A non-negative constraint is applied to prevent 
overfitting and increase the model interpretability. This step of optimization is 
done on the metadata, and the prediction results of each model for each case are 
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used to optimize the model weights. The individual models that perform well in 
the prediction task tend to get larger weightings. The K individual models βk are 
combined and used for prediction of DVH PCS Y.  The ensemble in this study 
consists of nine models, including stepwise, ridge, lasso, and elastic net with six 
different λ2-to- λ1 ratios. Figure 13.4 shows one example of the model weights 
from the individual models. This model is built using 50 prostate sequential boost 
cases. Y is the bladder DVH PCS1, and X consists of bladder anatomical features. 
It is apparent that regression coefficients differ from model to model, even though 
these are all variants of linear regression models. Note that model 1, stepwise 
regression, uses the least number of features, and model 2, ridge regression, evi-
dently underfits.

13.3.2  Outlier Filtering

In previous studies, it has been pointed out that automatic outlier removal requires 
further investigation [26, 27]. To mitigate this, we incorporate a model-based auto-
matic outlier removal routine in the ensemble model in order to further improve 
model robustness and address the volatile nature of clinical data. We utilize the 
cross-validation meta-data native to the proposed ensemble method to identify and 
remove impactful dosimetric and anatomical outliers.

13.3.2.1  Anatomical Outliers and Dosimetric Outliers
The first type of outliers is anatomical outliers. Anatomical outliers refer to cases 
with uncommon anatomical features relevant to DVH prediction, such as abnor-
mal OAR sizes, unusual OAR volume distributions relative to PTV surface. 
Generally, anatomical outliers are more likely to deviate from the linear model, 
and when they do, the effect of these cases are generally larger than normal cases 
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due to the quadratic data fidelity term of the regression model. Therefore, it is 
necessary to identify anatomical outlier cases that are detrimental to model build-
ing and remove those from the model before training. Other than anatomical outli-
ers, there are cases that are detrimental to model building due to limited OAR 
sparing efforts and/or capabilities. These plans are categorized as dosimetric out-
liers. Dosimetric outliers include but are not limited to (1) treatment plans with 
inferior OAR sparing, (2) wrongly labeled data, such as 3D plans mixed in 
IMRT plans.

13.3.2.2  Prediction Performance Measure
Weighted root mean squared error (wRMSE) is defined to evaluate model predic-
tion accuracy:

 
wRMSE w DVH DVH

i

N

i i i= −( )
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∑
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wRMSE measures the overall deviation of predicted DVHs from ground truth 
DVHs, which are clinically planned. Weightings are introduced to emphasize higher 
dose regions of DVHs, which are generally considered to be of more clinical signifi-

cance in OAR dose predictions. Here w Nw wi i
j

N

j
' =

=
∑

1

 denotes the normalized 

weighting factor for bin i of DVH curves.

13.3.2.3  Model-Based Case Filtering Method
To further improve the robustness of the ensemble model, cases with the highest s% 
median (of all individual models) internal cross-validation RMSE error are dropped 
from the training set. The percentage threshold s is selected to balance the trade-off 
between model robustness and accuracy. Empirically, we find that 10% is generally 
a good choice, even though the actual percentage of outlier cases is unknown and 
may differ from 10%. The complete workflow of the ensemble model with model- 
based case filtering is shown in Fig. 13.5. Similar to the model presented in Sect. 
13.2, the end result of the training process is a set of regression coefficients, which 
can be used to predict OAR DVHs for future cases.

13.3.3  Retrospective Validation

In order to quantitatively evaluate the robustness of these regression methods in 
various challenging clinical environment, the KBP models were evaluated with 
limited training set size, training sets contaminated with anatomical outliers, and 
training sets contaminated with dosimetric outliers. In the outlier robustness tests, 
we purposefully mixed predefined outlier cases into the training set and validate 
the final model with normal cases. The rationale for adding outlier cases is to add 
controlled variation to the dataset and evaluate the robustness of the proposed 
model. Details regarding types of data used in the experiments are summarized in 
Table 13.1.
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Figure 13.6 shows the prediction performance of individual models and the 
ensemble model, measured by DVH RMSE. The ensemble model consistently pre-
dicts better than, or similar to the best performing individual model in every chal-
lenging situation. It outperforms every individual model in at least one clinical 
scenario. With improved robustness, the proposed regression method potentially 
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Fig. 13.5 The proposed ensemble learning workflow

Table 13.1 Summary of data used in the experiments

Dataset type Training data Validation data
Anatomical 
outliers

10 prostate cases treated with lymph nodes 
and 40 treated without lymph node

111 prostate cases treated 
without lymph node

Dosimetric 
outliers

40 prostate IMRT cases and 10 prostate 
conformal arc plans

110 prostate IMRT plans

Small training 
set

20 prostate IMRT cases 146 prostate IMRT cases
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enables end users to build site-specific, physician-specific, or even planner-specific 
models, without manually screening the training cases.

13.4  A KBP Model for Multiple-PTV Plans

The PCA-based DVH prediction model presented in previous sections only natively 
predicts DVHs in treatment plans with one PTV. The model can be modified to 
predict cases with multiple PTVs by using a simple feature summation method. 
However, the modification only works well under certain circumstances (e.g., simi-
lar prescribed dose ratio). In this section, we introduce a novel KBP model coupled 
with a generalized feature [20] to handle plans with multiple PTVs.

13.4.1  Generalized Distance to Target Histogram

We first define a multidimensional feature set, generalized distance-to-target histo-
gram (gDTH), to represent the geometric variations of an OAR to multiple PTVs. In 
this section, we shall focus on the two-dimensional version of this concept but 
higher dimensional gDTHs can be developed similarly for cases with more than two 
PTVs. The elements of a gDTH matrix are defined as
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where d1 and d2 denote distances from a voxel to primary and boost PTVs, respec-
tively. Gij is the fraction of the OAR volume with distances to the primary PTV 
surface smaller than d(i), distances to boost PTV surface smaller than d1 + d(j). To 
generate a full gDTH for an OAR, we first calculate d1 and d2 for all voxels inside 
the OAR and then sort d1 and d2 - d1 into discrete bins on a 2D map.
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Fig. 13.6 Root mean- 
squared error (RMSE) for 
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13.4.2  Modeling with a gDTH-Based Similarity Metric

To effectively use the gDTH feature, we incorporate a similarity metric that mea-
sures the geometrical similarities of OARs with respect to multiple PTVs. The first 
term is the Frobenius norm of the differences between the gDTHs of two cases. To 
account for prescription dose variations, we add a second term to represent the dose 
ratio similarity and define the similarity metric as:
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where gDTHtarget and gDTHref denote the gDTH of the target plan and that of the 
plan being referenced from the database; λ is a balancing factor empirically tuned to 
match the mean values of the first term and the second term in the training dataset; 
and d denotes prescription dose.

Using this similarity metric, the k-nearest neighbors (kNN) search then selects a 
subset of training cases that resemble the validation case. T-distributed statistical 
neighboring embedding (t-SNE) [28] is used to visualize this high-dimensional fea-
ture space and to justify similarity metric measurements on the feature space distri-
bution. T-SNE converts high-dimensional Euclidean distances to conditional 
probabilities and maps high dimension data to low dimension while preserving 
local structures of the datasets. A visualization of the proposed feature map of a 
dataset is shown in Fig. 13.7. Figure 13.7a shows a two-dimensional t-SNE map of 
the left parotid gDTHs of the 120-case training dataset in this study (the red and 
blue dots). Figure 13.7b is a validation case randomly picked to demonstrate the 
effectiveness of the proposed feature at differentiating cases with different OAR- 
PTV shape distributions. The blue dots on the map (Fig. 13.7a) are the cases selected 
by the similarity metrics to build the model to predict the parotid DVH of Fig. 13.7b 
(the validation case), while the red dots are the cases excluded from the modeling. 
Figure 13.7c-f further show the PTVs and left parotid anatomies of the selected 
(Fig. 13.7f) and unselected (Fig. 13.7c-e) cases, and their respective locations on the 
2D t-SNE map are indicated by the arrows.

13.4.3  Data Augmentation

Head and neck treatment plans have high inter-patient spatial variability, consider-
ing that the boost PTVs (i.e., GTVs) from various sub-sites are in different regions 
and that the OARs also vary significantly from patient to patient. Therefore, to suc-
cessfully train a reliable KBP model for head and neck treatments, many treatment 
plans are required. However, the treatment plans available for training purposes is 
limited. To make efficient use of the training cases and effectively increase the train-
ing dataset, we here present two data augmentation methods for our modeling pro-
cess. Both methods utilize single-PTV cases and the primary plans of multiple-PTV 
cases as the means to synthesize gDTHs.
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The first data augmentation method originates from an intrinsic property of 
gDTH. The rightmost column of gDTH is equivalent to the DTH associated with 
primary PTV.  In some cases, certain OARs are only affected by primary PTVs 
because the distance to boost PTVs is more than 5 cm larger than the distance to 
primary PTV. Such shape distribution is most common for brainstems and parotids. 
To simulate such cases, we scale OAR DVHs to various common clinical dose 
ratios—e.g., 44 Gy /70 Gy, 50 Gy/60 Gy, and generate zero filled gDTHs with only 
the rightmost columns remain unchanged from the original cases. We replicate the 
whole dataset in this fashion. By generating these additional cases, we effectively 
increase the number of training cases in which OAR DVHs are only affected by 
primary PTVs.

The treatment plans without boost PTVs can be utilized to simulate cases in 
which two PTVs have the same volume. For some cases, boost PTV surfaces over-
lap with primary PTV surfaces in the regions that are close to the OAR. We make 
the approximation that primary PTV plans can be scaled up to boost PTV dose level 
and can be treated as a plan with primary and boost PTVs of the same shape. For 
this type of augmented cases, gDTH can be generated by treating original primary 
PTV as both primary PTV and boost PTV.
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Fig. 13.7 A t-SNE visualization example: (a) A two-dimensional t-SNE map of the left parotid 
gDTHs; (b) The randomly selected validation case; (c-f) four example cases located in different 
regions of the feature map. In (a), blue dots mark the cases selected by the similarity metric for 
modeling the validation case in 3b, and red dots denote the rest of the dataset. (c), (d), (e) show 
three unselected cases, and the arrows indicate their locations on the t-SNE map, while (f) is one 
of the selected cases even though its PTVs (especially boost PTV) are significantly different to 3b 
in size and location. Both the x- and the y-axis of the t-SNE map are dimensionless and are of 
arbitrary units
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13.4.4  Training and Validation

With IRB approval, 268 HN cases were retrieved for model training and validation. 
From these cases, 120 cases were randomly selected for model tuning (feature 
selection, augmentation method evaluation) to avoid positively biasing the results. 
The model performance was tested with the remaining 148 cases. To evaluate the 
effectiveness of the proposed data augmentation methods, we first map the training 
set to a two-dimensional PCA space. The first two principal component scores of 
the training set gDTHs are set as the X and Y axes, respectively (Fig. 13.8). As 
shown in the figure, the data augmentation procedure populates two opposite sides 
of the gDTH distribution, where data points are sparse. Therefore, when predicting 
a validation case’s DVH with gDTHs near the edge of the map, augmented cases 
will be selected to build the model and help improve prediction accuracy and 
robustness.
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Fig. 13.8 The distribution of the first two principal component scores of gDTHs in the training 
dataset. Blue crosses represent augmented cases, and red dots represent the original training data. 
Also shown in the figure are three example pairs of structure sets that demonstrate the resem-
blances of the original and the synthesized cases. Left parotids, primary, and boost PTV structures 
are marked with cyan contours, red segments, and orange segments, respectively
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To quantitatively measure the improvements of the proposed modeling workflow 
over the previous process, we evaluate DVH prediction accuracy measured by the 
root-mean-squared error (RMSE). The model previously tuned with 120 HN cases 
is evaluated using a separate validation dataset consisting of 148 cases (all with 2 
PTVs). Compared with the current state-of-the-art KBP model [19], this model 
results in significantly reduced prediction RMSE for brainstem (p < 0.001), man-
dible (p  =  0.004), pharynx (p  =  0.034), oral cavity (p  =  0.022), and parotids 
(p < 0.001), but the improvements are not significant for cord (p = 0.051) and larynx 
(p = 0.099). When augmented cases are included in the training dataset, statistically 
significant improvements are observed for predicted DVHs of all OARs, including 
brainstem (p < 0.001), cord (p < 0.001), larynx (p = 0.004), mandible (p < 0.001), 
pharynx (p = 0.001), oral cavity (p = 0.011), and parotid (p < 0.001), as shown in 
Table 13.2. In particular, the DVH prediction accuracies are moderately improved 
when data augmentation is implemented, compared to the model without data aug-
mentation. For some OARs with high DVH variances (e.g., larynx), the improve-
ment is significant.

The multiple-PTV model workflow generates accurate and robust DVH.  The 
KBP plans guided by the proposed model demonstrates that the improvement in the 
DVH prediction model can translate into better plan quality in knowledge-based 
planning. KBP with the proposed modeling method can potentially help planners to 
achieve higher and more consistent plan quality, compared with the current clinical 
planning process.

13.5  Head and Neck Trade-off KBP Model

In treatment sites such as head-and-neck (HN), one set of DVH predictions pro-
vided by the standard KBP models may not be sufficient for clinical planning due to 
the complexity of OAR trade-off relations and considerations. Physicians usually 
prescribe OAR dose constraints based on estimates of the best achievable DVHs 
with desired trade-offs, and planners have to interact with the treatment planning 

Table 13.2 Model prediction accuracy comparison between the previous modeling process [19] 
and the proposed modeling process with and without data augmentation

DVH RMSE (Vol %)
Previous model Proposed model Proposed model with data augmentation

Parotid 7.99 (0.36) 6.92 (0.30) 6.83 (0.28)
Brainstem 5.11 (0.39) 3.73 (0.23) 3.77 (0.26)
Cord 5.53 (0.27) 5.19 (0.25)a 4.92 (0.25)
Mandible 6.31 (0.23) 5.70 (0.21) 5.59 (0.22)
Larynx 9.32 (0.74) 8.46 (0.80)a 7.19 (0.35)
Oral cavity 8.23 (0.43) 7.58 (0.40) 7.33 (0.41)
Pharynx 7.63 (0.28) 7.04 (0.32) 6.65 (0.27)

aThe improvement over the previous method is not statistically significant (paired-sample t-test, 
p > 0.05)
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system (TPS) and the physicians iteratively to achieve patient-specific optimal 
dose-sparing. This iterative process forgoes some of the time-saving advantages 
accomplished by the KBP. In this section, we present a preplanning trade-off esti-
mation method [6] that seeks to support trade-off decision-making by modeling the 
clinically viable trade-off experience embedded in prior clinical plans.

13.5.1  Plan Trade-off Modeling

The workflow of the proposed method, as shown in Fig. 13.9, starts with building a 
localized KBP model. First, given a case to predict, a case reference set (CRS) con-
sisted of N reference cases is built using the treatment plans from a reference data-
base. The KBP model presented here is based on the KBP model discussed in Sect. 
13.4. The generalized distance-to-target (gDTH) feature is modified to select simi-
lar plans in terms of all OARs. After the KBP model is built, it is applied to all the 
cases in the CRS to extract trade-off-related variations. The difference between the 
predicted and the actual DVH PCS (from clinical plans) for all OARs is estimated 
and formulated as E ∈ RN × MP, which is essentially the fitting residuals of N training 
cases in the CRS (N = 35 in this study), each with M OARs and P DVH PCS scores 
per OAR. We observe in the clinic that significant portions of the fitting errors are 
due to the trade-off relations. As a result, there is valuable information in the fitting 
residuals. The purpose of subtracting the predicted PCS is to remove the variations 
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linked to anatomical differences and extract only the discrepancy between the KBP 
model and the clinical plans that are likely caused by trade-off decisions. The matrix 
E of OAR DVH fitting residuals is subsequently processed by principal component 
analysis (PCA) to further reduce the dimensionality with the first three PCS taken 
as the principal trade-off directions. The trade-off directions effectively reveal the 
most prominent DVH variation patterns in the CRS after adjusting for anatomy 
variations. These patterns are representative of the commonly occurring trade-offs 
in the historical reference database. Since the CRS used as training cases in model 
building is selected based on morphological similarity to the current case, the 
extracted trade-off directions are thus specific to the current case. These directions 
form a trade-off hyperplane that provides effective guidance for a well-constrained 
and clinically viable trade-off subspace.

13.5.2  Trade-off Simulation and Validation

Figure 13.10 shows the RMSE between the DVHs predicted by the trade-off hyper-
plane and the corresponding DVHs realized by the auto-generated trade-off plans. 
These RMSE values represent the fidelity of the auto-generated trade-off plans 
compared with hyperplane model predictions and are evaluated against the KBP 
model baselines as well as the clinical-DVH-fitted results. RMSEs of the max-dose 
constrained OARs (cord, brainstem, mandible) have in general higher values com-
pared to dose–volume constrained OARs (e.g., parotid). In clinical planning, when 
OARs are max-dose constrained, planners tend to place very low priorities on spar-
ing these OARs at dose–volume points other than the Dmax. This results in large 
DVH variations not attributed to anatomy differences. Therefore, these DVH curves 
are not predicted as accurately as DVHs of other OARs, such as parotid and oral 
cavity. Due to such variations, RMSE values, even for the KBP plans, are not 
expected to be zero. However, as it has been shown in the literature that KBP model 
predicted DVHs are indeed achievable [29], the non-zero RMSE of the KBP model 
predictions can establish the baseline for the hyperplane model

The RMSE of all 12 hyperplane-guided trade-off plans are not significantly 
different from the baseline RMSE (p  >  0.05; paired t-test; n  =  30 validation 
samples). These results suggest that all trade-off plans are as achievable as the 
KBP plans. Table  13.3 shows the averaged RMSE values for all OARs in all 
plans at various trade-off locations. The RMSE values for trade-off locations 
further away (±2 σ) appear to have higher RMSE values than other trade-off 
locations (± σ).

The trade-off hyperplane with three directions accounts for 68.9% ± 0.5% of the 
variances in the training plans, and 57.5% ± 3.0% in the validation plans. All 14 re- 
planed cases match closely to the predicted hyperplane location (DVH RMSE<10%). 
The feature extraction, regression, and DVH prediction of the proposed model work 
similarly to the conventional model-based KBP. The endpoint of the workflow is an 
ensemble of best achievable plans with various trade-off preferences. Additionally, 
the workflow can provide clinicians real-time estimations of planning trade-offs, 
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DVHs. Small RMSE values indicate that hyperplane predicted DVHs closely resemble the realized 
DVHs of auto-generated plans and hence provide evidence that the hyperplane DVH predictions 
are highly achievable. Different colors denote different ranges of RMSE values

Table 13.3 Average RMSE value for different trade-off locations

Types of DVH guidance Average RMSE (%) Standard deviation (%)
KBP (no trade-off) 4.96 2.48
First trade-off direction, ± 1 σ 5.07 2.56
First trade-off direction, ± 2 σ 5.39 2.52
Second direction, ± 1 σ 5.05 2.50
Second direction, ± 2 σ 5.35 2.62
Third direction, ± 1 σ 5.08 2.46
Third direction, ± 2 σ 5.30 2.51
Clinical DVH fitted 5.02 2.33
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thereby providing systematic guidance on the best achievable dosimetric parame-
ters for informed decision-making.

13.6  A Complete Workflow for KBP Planning of Whole Breast 
Radiation Therapy

Whole breast radiation therapy (WBRT) is routinely used in post-operative settings 
to reduce the risk of locoregional recurrence. Describe tangential beam configura-
tion. For WBRT, forward planning techniques such as field-in-field and fluence edit-
ing are the standard practice. In the fluence-editing method, the planner starts with 
an initial fluence and modifies the fluence iteratively. This technique requires hours 
of fine-tuning fluence manually, and the plan quality is highly dependent on the 
planner’s experience. In this section, we present an automatic planning method for 
WBRT [13]. Different from the KBP models presented in earlier sections, the 
WBRT auto-planning method generates fluence maps directly without using the 
inverse optimization engine embedded in the TPS.

13.6.1  Digitally Reconstructed Radiograph (DRR)-Based 
Energy Selection

The first decision to make when planning a WBRT case is to select the appropriate 
beam energy. At our institution, two types of beams are typically used: (1) single 
energy (SE): 6X beams and (2) mixed energy (ME): 6X and 15X beams. The plan-
ner determines the beam energy configurations by examining the beam path length. 
To build an automated energy selection tool, prior clinical plans are used to build a 
binary decision model (a choice of single or mixed energy) and classify the query 
case for the energy selection. Digitally reconstructed radiographs (DRRs) are gen-
erated in each beam direction, and the gray-level histogram within the irradiation 
volume is calculated. Principal component analysis (PCA) is then performed on the 
gray-level histogram of each case in the training set (two beams combined) to 
reduce the data dimension. The first two principal component scores are subse-
quently used as features for the classification model. The energy decision boundary 
is then determined in the 2D feature space. It is worth noting that the idea behind 
this model is that the radiological path length in the beam direction can be effec-
tively represented by the DRR gray values and captured by the PCA.

13.6.2  Anatomy-Driven Fluence Estimation

The second step of the workflow is to generate a fluence map to achieve the optimal 
dose distribution within the 3D target volume. The fluence map is generated by 
predicting the fluence intensity of each pixel on the fluence map. Ideally, the opti-
mal dose distribution should cover the entire breast target with prescription dose 
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while minimizing the hot spot volume (105% of prescription dose). A machine 
learning algorithm has been developed to learn the correlation between anatomical 
features and the optimal fluence intensities. We utilize the random forest (RF) model 
to summarize the relationship between input features (shape-based features, includ-
ing gray-level intensity, penetration depth in breast target, penetration depth in lung, 
etc.) and output variables (pixelwise fluence intensity). RF is a highly nonlinear 
model which initializes decision trees using randomly sampled data from a training 
dataset and generates a prediction by averaging the output from all trees. The RF 
model was trained using all 20 training plans with 150 trees. For query cases, the RF 
model predicted fluence intensity at the pixel level and the entire fluence map served 
as the fluence estimation for the corresponding beam. For ME cases, the entire pre-
dicted fluence map was divided into a low-energy (6X) and high-energy (15X) com-
ponents. Low-energy and high-energy beams from the same side share same beam 
parameters such as gantry angle, collimator angle, and jaw sizes. The ratio of low-
energy fluence intensity and high-energy fluence intensity for each pixel on the 
fluence map depends on the beamlet penetration depth, and this relationship was 
learned from the 10 training ME plans.

13.6.3  Patient-Specific Fluence Fine-Tuning

The fluence map generated from the RF model inherits the plan quality from the 
training cases. However, the physician may have a patient-specific requirement for 
the target coverage or a constraint for a high-dose volume or hot spot. The third step 
offers physician an opportunity to interactively fine-tune the 3D dose distribution. 
This is achieved by specifying the dose to be delivered to anchor points while bal-
ancing dose contribution from both beams. Dose anchor points are identified in two 
steps. First, they are identified on the iso-plane in the irradiated volume and later 
adjusted during the centrality correction step. Then, the centrality correction step 
actively balances the beamlet penetration depth inside the breast tissue from either 
side for each dose anchor point. Geometric and dosimetric parameters (penetration 
depth, dose at anchor point, etc.) of these dose anchor points are summarized from 
training plans to serve as baseline values, and these parameters can be further 
adjusted to provide specific coverage or dose reduction for any query patient.

13.6.4  Planning Validation

13.6.4.1  Data Selection
The previous sections already referred the number of cases for training, etc. A total 
of 40 institutional review board–approved WBRT plans from Duke University 
Medical Center were retrospectively studied. All plans were treated with 50 Gy in 
25 fractions. Twenty plans, 10 with single energy (SE, 6MV) and 10 with mixed 
energy (ME, 6/15MV), were randomly selected to establish the optimization param-
eters of the proposed methodology. The remaining 20 plans (10 SE and 10 ME 
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plans) were reserved for validation. Among the 20 training cases, 12 are left breast 
cases. For validation cases, 9 out of 20 are left breast cases. SE plans use two 6MV 
beams, namely the medial beam and lateral beam, set by the attending physician to 
include the whole breast and skin flash. For ME plans, two high-energy beams 
(15MV) utilize the same beam setup and beam apertures as two low-energy beams 
(6MV) in the corresponding beam direction. Clinical plans of all 40 cases were 
manually generated in the Eclipse™ TPS by planners iteratively painting the flu-
ence and calculating the dose distribution.

13.6.4.2  Model Training and Validation
The PCA analysis result is shown in Fig. 13.11. The DRR intensity histogram for 
each patient is shown in Fig. 13.11a. In Fig. 13.11b, red dots represent single energy 
cases and green dots represent mixed energy cases. Solid squares represent training 
cases while circles represent validation cases. PC1 = 0 served as a good classifier 
with an accuracy of 19/20 for the validation cohort, meaning the model suggested 
the same energy combination as the clinical plans.

13.6.4.3  Plan Quality Comparison
Dose distribution was qualitatively compared between clinical plans generated 
manually and automatically generated plans. Figure 13.12 shows the isodose distri-
bution comparison for one large breast case (left three columns) and one small 
breast case (right three columns). Overall dose homogeneity was comparable 
between the clinical and auto-plans. The high-dose volume (105% Rx dose volume) 
was similar in location as well as volume between two plan groups.

Boxplots of dose–volume metrics are shown in Fig. 13.13. The median and inter-
quartile range for each endpoint are comparable between two plan groups.

13.6.4.4  Plan Efficiency
The average optimization time for auto-plans is <20 s. Even as a stand-alone plat-
form, the entire process including data transferring from and to the treatment 
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planning system can be accomplished within 5 min. This is substantially faster than 
the manual process which ranges from 30 min to 4 h in our clinic.

13.7  Beam Bouquet Knowledge Model for Lung 
IMRT Planning

Another important aspect of treatment planning is beam angle selection. For certain 
planning sites, such as lung, good beam angle selection decisions are critical in 
creating high-quality treatment plans. In clinical practice, beam angles are often 
selected based on the planner’s experience and adjusted by trial-and-error to find an 
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optimal set of beam angles or a beam bouquet. In this section, we present a method 
of establishing a small set of standardized beam bouquets for lung IMRT planning 
[15]. The bouquets are determined by learning the patterns from the multi- 
dimensional beam configuration features of prior clinical plans using a cluster anal-
ysis method.

13.7.1  Dissimilarity Metric between Two Beam Bouquets

First, we define a dissimilarity measure between two beam bouquets. The dissimi-
larity measure is computed as the sum of angle separations between each pair of 
corresponding beams in the two bouquets. It takes into account the permutation of 
beams within each bouquet when comparing two beams. Specifically, a distance is 
first defined between two angles a and b,

 
δ a b a b kk Z,( ) = − +∈min ,360  

where k can take any value in the integer set Z and the 360 k term accounts for the 
360 degree modulo in the angle space. Then, the dissimilarity measure between two 
bouquets with the same number of beams x1 = (x11, x21, ···, xn1) and x2 = (x12, x22, ···, 
xn2) is defined as:
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where σ is any permutation π of the beam orders. In our dataset, the number of 
beams used in a plan ranges from 6 to 11, thus it is necessary to classify beam angle 
settings with different number of beams, by defining the dissimilarity measure 
between bouquets with different number of beams. If two bouquets x1 and x2 have 
different numbers of beams n1 and n2 and assume n1 > n2 without losing generality, 
we define the dissimilarity as the sum of two terms:

 
d x x d x x d x x x

x x x x1 2
1

1 2
1
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′

⊆
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where x1
′  is a subset of x1 which has the same number of beams as x2 and x2

′  is a 
subset of x2 with beam number n1− n2. The first term compares n2 beams in both x1 
and x2 to calculate the distance, while the second term compares the remaining n1− 
n2 beams in x1 with x2. This step ensures that every beam in the plan is taken into 
account when calculating the dissimilarity between two bouquets with different 
number of beams.

13.7.2  Establishing the Standardized Beam Bouquets

After the dissimilarity (or distance) is calculated between each pair of the beam 
bouquets, a k-medoids method is used to sort the beam angle configurations into 
clusters. A medoid is defined as the object in a cluster, with the average distance 
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to all the other objects in the same cluster (within-cluster distance) being the mini-
mal. Thus, the medoid of a cluster is the most representative beam angle configu-
ration of all cases within the cluster. The set of all medoids characterizes the 
major types of beam angle settings frequently used in clinical lung IMRT plans, 
and they are designated as the standardized beam bouquets. The medoid case that 
corresponds to a standardized beam bouquet is designated as the reference case of 
this bouquet.

The average silhouette width s̄ is the average of the silhouette index s(i) over all 
the data points in the dataset. The silhouette index measures how close each point in 
one cluster is to the data points in the neighboring clusters. For a data point i in 
cluster A, let a(i) be the average distance of i to all other points in cluster A, d(i, C) 
be the average distance of i to all the data points in another cluster C. The silhouette 
index is defined as:

 

s i
a i

d i C
C A

( ) = −
( )
( )

≠

1
min ,  

The silhouette index s(i) has a numerical value from +1 to −1. A large positive 
value indicates the point in one cluster is far from neighboring clusters, while 
negative value indicates the point may be assigned to a wrong cluster. A silhou-
ette plot can be used to visualize how well separated the resulting clusters are. It 
plots the silhouette index s(i) for each data point as a horizontal bar. A wider 
silhouette plot indicates larger s(i) values. The beam settings in the training data-
set were classified into 3–8 clusters by the k-medoids algorithm. The average 
silhouette width s ̄ for each classification result is plotted against the number of 
clusters in Fig. 13.14a. As shown in this figure, the classification with six clusters 
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Fig. 13.14 (a) The average silhouette width for the classifications with each given number of 
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has the largest average silhouette width value of 0.39, which suggests that six 
bouquets best represent the beam configuration patterns in the dataset. The sil-
houette plot with six clusters is shown in Fig. 13.14b. The all-positive silhouette 
index values indicate that the beam configurations align well within their assigned 
clusters.

The beam bouquets corresponding to the medoids of the six clusters are shown 
in Fig. 13.15. The number of beams in these bouquets ranges from 7 to 9, which 
reflects the number of beams used in the reference clinical plans. The representative 
axial CT image slices of these reference plans are also shown under each medoid in 
the figure. As shown, these beam configurations reflect the gross anatomical and 
tumor location characteristics.
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Fig. 13.15 The six beam bouquets are shown in polar coordinates using IEC beam angle conven-
tion at the first and third rows. The solid radial lines indicate the beam directions. The number 
inside the parenthesis on top of each bouquet labels the ID of the bouquet. The representative axial 
CT image slices of the reference cases corresponding to the medoids of the six clusters are shown 
under each medoid at the second and fourth rows. The PTV is denoted by the red contours and the 
lung by the blue contours
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13.7.3  Validation with Clinical Cases

Sixty lung IMRT plans with prescription doses ranging from 45 Gy to 70 Gy were 
retrospectively studied under an IRB-approved research protocol. The plans have 
six to eleven co-planar beam angles, with an average beam number of eight. The 
dataset has a wide range of tumor size (from 12 to 4432 cm3, mean 502 cm3) and 
locations. The tumor locations in the dataset are distributed as follows: 26 cases in 
the right lung, 23 in the left lungs, 8 in the mediastinum, and 3 in the chest walls.

Twenty additional randomly selected lung cancer cases were re-planned to assess 
the validity of using the standardized beam bouquets. For each case, an experienced 
planner manually selected a standardized beam bouquet based on his/her judgment 
of the similarity between the tumor location and patient anatomical features of the 
case and those of the reference cases. The planner had no knowledge of the beam 
configurations used in the original clinical plans. After the beam bouquet was 
selected, inverse optimization was performed using the same dose objectives as in 
the clinical plans. The mean and standard deviations (SD) of the dosimetric param-
eters in plans using six beam bouquets and those in the clinical plans. They are 
compared by paired t-tests.

Table 13.4 lists the mean and standard deviations of the dosimetric parameters in 
the bouquets based and the clinical plans, as well as the paired t-test values. The 
lung V10Gy, the esophagus mean dose, cord D2%, and PTV dose homogeneity 
defined as D2%–D99% are statistically better in bouquet-based plans (p-value<0.05), 
but the improvements (<5%) were small and may not be clinically significant. Other 
dosimetric parameters are not statistically different.

13.8  Summary

In the modern era of radiation oncology, KBP is increasingly implemented to facili-
tate high quality and efficient treatment planning. KBP refers to the concept of 
modeling clinical planning knowledge embedded in previously treated cases and 
utilizing the knowledge to help generate new plans. KBP exists in various forms, 
ranging from forward planning to inverse planning. In this chapter, we have 

Table 13.4 Dosimetric parameters in plans using six beam bouquets and those in clinical plans

OAR/PTV Parameter Bouquets plans Clinical plans p-value
Lung V10Gy (% OAR volume) 29.1 ± 11.7 32 ± 12.6 0.01

V20Gy (% OAR volume) 18.3 ± 8.1 18.9 ± 8.7 0.44
Mean dose (% Dx) 18.8 ± 7.0 19.2 ± 7.0 0.28

Esophagus Mean dose (% Dx) 32.0 ± 16.3 34.4 ± 17.9 0.01
Heart V60Gy(% OAR volume) 0.6 ± 1.1 1.2 ± 2.7 0.39

Mean Dose (% Dx) 19.2 ± 16.5 19.4 ± 16.6 0.74
Spinal cord D2% (%Dx) 47.7 ± 18.8 52.0 ± 20.3 0.01
PTV D2%–D99% (% Dx) 17.1 ± 15.4 20.7 ± 12.2 0.03
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discussed DVH-prediction models for inverse IMRT/VMAT planning, a breast 
WBRT auto-planning technique, and a lung beam angle selection model.

The key elements of successfully building a robust KBP model are data quality 
and data sufficiency. Considering the time-sensitive nature of the clinical environ-
ment and the large variations of patient population, there can be some plans in the 
clinical database that do not follow the general planning trends. These plans are con-
sidered outliers when training a KBP model. The effect of outliers of KBP modeling 
has been extensively studied. For instance, Delaney et al. have shown that dosimetric 
outliers have marginal effects on resulting plan quality. To directly address the effect 
of outliers, Sheng developed an outlier identification method [17]. Nevertheless, it is 
critical to examine a KBP model and properly validate it before clinical use to ensure 
the model indeed represents best achievable plan qualities from previous experience. 
Another important aspect of KBP modeling is the number of plans used to train a 
model. Boutilier et al. have shown that different models require different amount of 
cases [30]. Therefore, the number of cases for a robust model still requires careful 
consideration when designing a KBP model for clinical use.

Future research in KBP will likely focus on more sophisticated modeling meth-
ods and more complex planning scenarios. Both directions will be enabled by the 
development of larger database of high-quality clinical plans through integration 
efforts across consortium of institutions as well as accumulation of planning cases 
within individual institutions. Recent publications have shown promising results 
using complex nonlinear models such as convolutional neural networks to success-
fully predict voxel-level dose in some cancer sites. Work has also begun to handle 
more complex cancer targets, more complex trade-off decisions, as well as more 
complex treatment techniques. Beyond more complex and powerful models, the 
sophistication of modeling methods will also mean more advanced algorithms for 
learning, evolving, and integrating models. So far, data-driven KBP has focused on 
building models in a batch mode, that is, learning from static datasets. As these 
models mature and are deployed in clinical use, another important research question 
will address how these models can be improved as new clinical cases are accumu-
lated and new treatment techniques are developed.
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14Intelligent Respiratory Motion 
Management for Radiation Therapy 
Treatment

Martin J. Murphy

14.1  The Problem of Respiratory Movement 
During Radiotherapy

A number of treatment sites for external-beam radiation therapy, such as lung, 
breast, pancreatic, and liver cancers, move as the patient breathes, which compro-
mises the precision of their irradiation. For the purpose of this chapter we will use 
lung tumors as the paradigm to represent this motion problem.

To achieve the best likelihood of effective beam coverage for a treatment target 
that moves during respiration, there are four basic approaches: (1) inhibit the move-
ment via breathholding or physical restraints; (2) enlarge the therapy beam field so 
that the tumor never moves outside of it (the margin approach); (3) turn the beam on 
only when the tumor is at or near the beam isocenter (the gating approach); (4) 
move the beam or the patient synchronously with breathing so that the beam stays 
continuously aligned with the tumor (the tracking approach). In the tracking 
approach [45], the beam can be realigned by moving the linear accelerator (LINAC) 
itself [1, 9, 60, 61, 63], or shifting the multileaf collimator (MLC) aperture [5, 12, 
20, 30, 39–42, 49, 55, 59, 68], or, in the case of a charged-particle beam, magneti-
cally steering the beam [4]. Alternatively, the patient can be moved by shifting the 
couch, so that the tumor remains at a fixed beam isocenter [10, 38, 52, 54, 64, 65]. 
Gating and tracking are the two approaches that call for adapting to tumor motion 
in real time during treatment.

Some patients breathe regularly; some do not. Likewise, anatomical movement 
during breathing is sometimes simple; sometimes complex. Figures 14.1 and 14.2 
illustrate two representative patients’ breathing patterns, as measured by an optical 
marker placed on the chest. Figures  14.3 and 14.4 show how a sequence of 
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measurements of surface breathing movement (via the marker) can be related to the 
tumor’s actual position, measured via x-ray fluoroscopic imaging. These four fig-
ures combine to demonstrate the complications presented by the breathing model-
ing and prediction problem. Although superficially regular (as in Fig. 14.1), normal 
breathing is not strictly periodic, but changes amplitude and period over time [34, 
69]. In extreme cases, the breathing pattern can be highly irregular to the point of 
appearing chaotic (Fig.  14.2). The relationship between, e.g., tumor and chest 
movement can likewise range from stable, linear, and tightly correlated (Fig. 14.3) 
to unstable, nonlinear, or otherwise poorly correlated (Fig. 14.4) [50]. The  tumor/
surrogate correlation can vary over time (for example through changes in the rela-
tive amplitude and phase of the movements), so that a sequence of measurements of 
surrogate and tumor positions appear to be uncorrelated (as in Fig.  14.4). This 
greatly complicates any delivery compensation method (such as gating or tracking) 
that relies on respiratory surrogates to infer tumor movement.

These characteristics of breathing and tumor movement make it exceedingly dif-
ficult to devise an a priori bio-mechanical model of breathing that can accurately 
and continuously describe the movement of the anatomy and enable its prediction. 
The problem is instead a good candidate for a machine learning approach, using 

Fig. 14.3 A sequence of 
measurements of tumor 
position and chest marker 
position, showing a tight 
correlation over time [50]

Fig. 14.4 An example of 
tumor and chest marker 
positions that do not 
maintain a tight correlation 
over time [50]
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algorithms that can learn to imitate and reproduce the movement patterns via train-
ing on examples of the patient’s actual breathing. These models can be developed 
and applied during both the treatment planning and delivery processes.

The first step in respiration management occurs during the treatment planning 
stage, where the motion is first detected and characterized. Historically, this has 
been accomplished via 4DCT scanning. A 4DCT scan, however, typically has a 
coarse time resolution. Furthermore, respiratory movement can change from day to 
day, and even minute by minute, making any particular scan a potentially unrepre-
sentative example. Daily rescanning to accommodate these variations becomes 
dose-intensive and requires replanning as well.

Lin et al. [35, 36] have developed and tested a super-learner model for motion 
prediction and management in the planning stage. Their model uses a collection of 
clinical and imaging features extracted from the treatment planning CT to train a 
respiration model that can anticipate actual tumor movement during treatment. 
They are primarily interested in predicting the likely direction and amplitude of 
tumor motion without recourse to a 4D CT. They propose that the model can be used 
to choose an appropriate motion compensation method during delivery (such as 
breathholding or gating) based on the range and other characteristics of the modeled 
tumor motion. Their super-learner is a hybrid algorithm incorporating Random 
Forest, adaptive neural network, and other machine learning components.

If the treatment planning process recommends that a dynamic compensation 
method (e.g., gating or tracking) should be used during treatment, then it is neces-
sary to determine how the observable breathing signal that will be used during treat-
ment is related to the actual tumor motion. This could involve observing the tumor 
itself via imaging (with or without implanted fiducials), the measurement of a sur-
rogate breathing signal such as a chest marker, or both. If a surrogate such as a chest 
marker is to be used to infer the tumor position during treatment (as with the Varian 
RPM system, Varian Medical Systems, Palo Alto, CA), then Figs. 14.3 and 14.4 
illustrate the potential difficulties. Sometimes the tumor and the surrogate move-
ment have a nice, stable relationship that allows tumor prediction solely from the 
marker; sometimes the relationship is not simple or stable. In either case, a machine 
learning algorithm can be used to learn and follow the relationship, beginning with 
either 4DCT or fluoroscopic imaging during treatment planning, and then continu-
ing during the dynamic control of treatment. In the following sections we will dis-
cuss dynamic respiratory compensation during treatment, with the understanding 
that the algorithms used for these processes are initialized during the treatment 
planning stage.

14.2  Dynamic Compensation Strategies during Delivery

There are two fundamental problems in adapting to tumor motion during treatment 
delivery: (1) determining the precise tumor position at any given time; (2) making a 
synchronized adaptive response to maintain beam/tumor alignment. Tumor position 
can either be measured directly via imaging or other detection methods, or it can be 
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inferred by measuring respiratory movement that is reliably correlated with the 
tumor movement and can act as a surrogate for it [2, 18, 24, 25, 29, 31, 50, 70, 75–
77]. Here we are interested in learning and anticipating tumor position from some 
kind of surrogate respiratory signal.

The basic mechanisms for maintaining beam alignment with a moving tumor are 
illustrated schematically in Figs. 14.5 and 14.6. Figure 14.5 is an “open-loop” con-
trol architecture that is appropriate for either a gating or a beam tracking scheme. 
The tumor moves solely under the influence of patient movement (e.g., breathing). 
Respiration and/or tumor position sensors provide the input to the loop. The correc-
tive signal propagates through various system components, each of which takes 
some time to react, resulting in a cumulative delay before the beam responds with 
the correction. Figure 14.6 is a “closed-loop” architecture in which the system’s 
response combines with the patient’s anatomical movement to influence the 

Fig. 14.5 An open control 
loop architecture for 
maintaining beam and 
tumor alignment

Fig. 14.6 A closed-loop 
beam alignment 
architecture
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position of the target relative to the beam isocenter and thus the input to the loop. 
This is required for an adaptive system that moves the couch and patient relative to 
the beam as the tumor moves, so as to keep the tumor at a fixed position (set point) 
in space. In this case, respiration and couch shifts combine to move the tumor. In 
both architectures, the tumor position can be established either by following a sur-
rogate breathing signal that correlates with tumor motion, or by directly observing 
the tumor’s position, or both.

No adaptive response to movement can occur instantaneously, so it is necessary to 
compensate for delays between localization of the tumor and adjustment of the beam 
timing or alignment. This comes down to predicting the future tumor position (or its 
surrogate respiratory signal) by an amount equal to the response delay time so that 
the adaptation is synchronized to the tumor’s actual position. These delays can range 
anywhere from 50 to 1000 ms, depending on the tracking/correction method [3, 9, 
13–15, 26, 32, 58, 73]. Temporal prediction of the tumor’s future position via machine 
learning algorithms has been the subject of a large and wide- ranging number of stud-
ies and continues to inspire new and more sophisticated approaches.

Intelligent delivery algorithms must be capable of continual adaptation to changes 
in the motion patterns, through methods of continuous retraining as the patient 
breathes. Many different tracking algorithms have been investigated (see, e.g., [11]). 
Among them, adaptive neural networks were found early on to be an effective 
machine learning approach to this problem [27]. They will therefore provide the 
entry point for the discussion of machine learning for dynamic treatment delivery.

The object of this discussion is the control loop element identified in Figs. 14.5 
and 14.6 as the “correlator/predictor.” This element receives as input some measure-
ment of breathing and provides the anticipated position of the tumor as input to the 
beam or couch controller. To allow for control loop delays, the “correlator/predic-
tor” must emulate the patient’s breathing in order to predict the future respiratory 
signal and/or tumor position.

14.3  Using an Artificial Neural Network (ANN) to Model 
and Predict Breathing Motion

A machine/deep learning algorithm provides an effective means to perform the cor-
relation/prediction function in both open-loop and closed-loop control systems. Its 
virtue lies in its trainability from real-world data, whereas the alternative would be 
to construct a detailed biomechanical model of respiration that would nevertheless 
need to be customized for individual patients.

An artificial neural network (ANN) is a trainable machine learning algorithm. 
One form that is very useful for predicting a signal amplitude has the basic architec-
ture shown in Fig. 14.7. In this kind of application we have some measured signal 
S(t) as input and a future instance of that signal S(t + n) as the output target. The job 
of the ANN is to make an estimate S′(t + n) of the future target signal from samples 
of the input signal. The input layer of the network is provided with discrete mea-
surement samples from the past signal history, the hidden layers compute weighted 
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combinations of the input data, and the output layer delivers an estimate of the target 
signal at a future time. In Fig. 14.7 the target signal is a future sample of the input 
signal, in which case the network is trained to imitate the input signal so that it can 
predict its future behavior. When the target signal finally arrives at time t + n, the 
prediction S′(t + n) is compared to it, an error is computed, and this error is used to 
adjust the network weights so as to produce a more accurate prediction of the next 
sample. Figure 14.8 shows a configuration to use the input signal S(t) to predict a 
different signal P(t) that is correlated in some way with the input signal. In this case 

Fig. 14.7 An artificial 
neural network architecture 
to predict a signal 
amplitude S(t)

Fig. 14.8 An ANN 
configured to predict a 
different signal P(t + n) 
that is correlated with the 
input S(t)
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the network is trained to predict the correlated target signal from the input. The 
target prediction might be for the present moment or some future time.

In our breathing prediction problem, we identify the input data with a sequence 
of discrete measurements of the patient’s breathing. This could be as simple as the 
time history of the amplitude of a single breathing signal, such as a moving marker 
[44] or spirometer signal [25, 77], or it could comprise simultaneous measurements 
of multiple breathing signals [76]. If we are only interested in predicting breathing 
movement to compensate for a treatment system’s lag time, then the target signal 
would be a future instance of the patient’s measured breathing and the network’s 
output would be an estimate of that future instance. If we are interested in deducing 
the tumor position from the measured breathing signal, then the input signal would 
be a breathing surrogate measurement and the target data would be a measurement 
of the tumor’s spatial position at some particular time. It could be the tumor position 
at the present time, in which case the ANN makes a spatial correlation between the 
tumor and breathing motions, or it could be the future position of the tumor, in 
which case the network performs both a correlation and a temporal prediction to 
arrive at a good estimate of the tumor location.

14.4  Basic Neural Network Architecture for Correlation 
and Prediction

14.4.1  The Single Neuron, or Linear Filter

We can introduce the basic computational components of an artificial neural net-
work for correlation and prediction by considering a simple network configured to 
predict the future amplitude of a single breathing signal sampled at discrete time 
intervals. It begins with a single neuron, as shown in Fig. 14.9. (This has historically 
been known as a linear perceptron.) The input is the amplitude history of the 

Fig. 14.9 A simple linear 
filter for prediction
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measured signal S(t), sampled at n intervals of τ seconds. For breathing, which has 
a period of a few seconds for most people, τ might be on the order of 100 ms. We 
take the N most recent samples. Each sample is multiplied by a weight wi and the N 
samples are summed:

 
S t w S t iN

i
i

' ( )= −( )
=

∑ τ
1

 (14.1)

If we stop here, we have a simple linear filter, where S′(t) is the filter’s estimate 
of the signal amplitude at the present time, based on the previous N samples. S′(t) is 
compared to S(t) and the error is used to adjust the weights until the difference is 
minimized. If we want it to predict S at some future time t + Δt, rather than the pres-
ent, we wait Δt seconds for the actual signal to arrive, compare it to S′ to find the 
error, and adjust the weights accordingly.

The linear filter (i.e., a single neuron) in Fig. 14.9 and eq. 14.1 can do a reason-
able job of predicting breathing, provided that the pattern isn’t too changeable or 
irregular [46]. It provides a starting point to introduce several basic elements in the 
development of ANNs for prediction and correlation.

The weights are initially optimized in the training stage. For a basic signal pre-
diction filter this typically consists of presenting the filter with pre-recorded signal 
histories that are representative of the signal that one ultimately wants to predict. 
For example, if one wants a filter customized to emulate and predict a particular 
patient’s breathing, one begins by recording a segment of the patient’s breathing 
signal. This is presented to the filter incrementally via a sliding window that is N 
samples wide, so that the filter gets a set of N samples up to a time t at the inputs, 
makes a prediction for t + Δt, compares the prediction to its target, which is the 
recorded signal at t + Δt, adjusts the weights, steps forward one sample, and repeats 
the process. This is an example of supervised sequential training. Sequential train-
ing has the advantage that, as the filter is presented with new breathing data that it 
hasn’t seen before, it can continue the process, retraining continuously to adapt to 
new breathing patterns.

The initial training process must be done in such a way that it doesn’t “see” 
future samples in the training stage before they would actually arrive in real time.

The simplest training algorithm for a linear neuron is the LMS (least mean 
square) method. Let Si be the vector of N input samples from the i’th training signal 
history, let Wi be the vector of N weights assigned to the inputs, and let εi be the 
difference between the predicted and target signal sample. The updated weight 
vector is

 W W Si i i i+ = +1 αε  (14.2)

where α is a parameter that determines the speed of convergence. In the case of 
sequential training, each training signal history Si is simply the previous signal his-
tory advanced by one sample.

There are numerous other algorithms to update the weights. For a more compre-
hensive review of ANN training algorithms, see for example [22], or [21], or another 
introductory textbook on neural networks.
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14.4.2  The Basic Feed-Forward Artificial Neural Network 
for Prediction

Soon after the single-neuron perceptron was proposed as a primitive machine learn-
ing algorithm for pattern recognition, Minsky proved that it, and any linear combi-
nation of neurons performing the function of eq. 14.1, could only do linear 
discrimination and was incapable of performing even a simple exclusive-or function 
[43]. This led to the development of nonlinear networks of neurons for more com-
plex pattern recognition and signal processing. Figure 14.10 is a schematic of the 
simplest nonlinear neural network—a feed-forward network with one hidden 
layer—for signal prediction. The inputs are distributed in parallel to two or more 
neurons like the one in Fig. 14.9 (the simple linear filter). These make up the “hid-
den” layer. (The layer is “hidden” because it can’t be reached directly from the 
outside.) The output x of each neuron is passed through a nonlinear “activation” 
function (the sigmoid function in eq. 14.3 is the most commonly used), weighted, 
and summed with the others in the output neuron, which delivers the final signal 
estimate.

 
y f x e x= ( ) = +( )−1 1  (14.3)

 
df dx y y/ = ( )1−  (14.4)

The activation function must be nonlinear; otherwise the network is reducible to 
a single linear neuron and nothing is gained.

Fig. 14.10 A basic 
feed-forward network with 
one hidden layer of 
neurons and a single 
neuron in the output layer
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14.4.3  Training the Feed-Forward Network

Each input to each neuron in the hidden and output layers in Fig. 14.10 has an inde-
pendently variable weight. However, the weights in the hidden layer are “blocked” 
from the output signal error by the nonlinear activation function. This prevents a 
simple linear generalization of the LMS algorithm in eq. 14.2. The problem is 
solved by the method of error back propagation.

Although the basics of back propagation can be found in any textbook on neural 
networks (e.g., [21]), there is some advantage to providing them here, using the 
simple two-layer network in Fig. 14.10 as the architecture. Let layer 1 be the hidden 
layer and layer 2 be the output layer (in this case just one neuron.) Let the index i 
apply to the data samples and j to the number of neurons in layer 1 (and also the 
equal number of input weights to layer 2). Let W1,j be the vector of weights for the 
j’th neuron in layer 1 (with components w1,ji) and W2 be the weight vector for the 
output (layer 2) neuron (with components w2,j). The outputs of the layer 1 neurons 
are x1,j before activation and y1,j after activation. The error in the predicted output 
signal is ε.

In the forward pass, the delta is calculated for layer 2:

 ∆2 = ε  

In the backward pass, the deltas for layer 1 propagate through the derivative of 
the transfer function:

 
∆ ∆1 1 1 2 21, , , , .j j j jy y w= ( )   −  

The incremental changes to the weights in the two layers are then calculated (in 
this example via LMS):

 
δ αw yj j2 2 1, ,= ∆  

 
δ αw Sji j i1 1, , .= ∆  

In addition to LMS, there are a number of other algorithms that can be used to 
update the weights [21, 22]. Regardless of which one is used, there are some general 
principles to be followed to get the best results. The first step is to initialize all of the 
weights. The usual practice is to choose them randomly, because this gets the neu-
rons acting independently. However, there is always some chance that a random 
initialization will come up with an unfavorable filter that performs badly. This can 
be avoided by performing the random initialization and subsequent training multi-
ple times, while testing each fully-trained filter on an independent validation signal. 
The set of weights that does the best job of predicting the validation signal becomes 
the optimal filter for application to test signals. The validation signal can be any part 
of the pre-recorded signal that wasn’t used for training.

It is also generally the case that a single pass through the training data will not 
result in optimal convergence of the weights. It is therefore customary to run through 
the training data repeatedly, starting each subsequent training pass at the weights 
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from the prior training pass. Each pass is called an epoch. However, there is the risk 
of overtraining the filter after too many epochs. In this case the filter becomes com-
pletely optimized to emulate the training data, but cannot generalize effectively to 
signals it has not yet seen. This can be avoided by testing each epoch of trained filter 
on the validation data, and terminating the training when the filter’s performance on 
the validation set is clearly worse than its performance on the training data.

The feed-forward breathing prediction network in Fig. 14.10 can be generalized 
to perform temporal prediction and position correlation by comparing its output to 
some measure of tumor position, as in Fig. 14.8.

14.4.4  The Recurrent Network

A static neural network is trained and then applied without modification to test data. 
An adaptive neural network retrains the neural weights as it acquires new data. A 
recurrent network is a closed-loop feedback architecture in which signals from the 
hidden and output layers are fed back to previous hidden layers and/or to the input 
layer. This architecture is inspired by the observation that the human brain is a 
recurrent network of neurons. Recurrent networks are sometimes referred to as 
dynamic networks because they adapt the neuron weights to ongoing experience 
through the feedback loop(s). The timing of the feedback determines the short- or 
long-term memory of the network. In Fig. 14.11, a simple recurrent network for 
prediction feeds the previous m-1 predictions back to the input layer at each time 
step S(t) of the input signal. The output signals are held back by the prediction inter-
val τ before they are supplied to the input, so that the error between S(t) and S′(t) can 

Fig. 14.11 A basic 
recurrent network
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be computed and used to update the weights. The hoped-for advantage is that the 
raw input data from the (potentially noisy) measurements is supplemented by fil-
tered data from the outputs that will smooth out the network’s response. A recurrent 
network can be trained in the same way as a feed-forward network, e.g., via back 
propagation. Mafi and Moghadam [37] have investigated the use of recurrent/
dynamic networks for breathing motion prediction.

14.5  Performance of Basic Neural Networks to Predict 
Tumor Motion

The problem of predicting breathing with an artificial neural network has been stud-
ied by a number of researchers (e.g., [8, 19, 27, 28, 33, 44, 47, 48, 56, 62, 67]).

14.5.1  Breathing Prediction Examples for a Simple 
Feed-Forward Network

A feed-forward network can have more than one hidden layer, each of which can 
have multiple neurons. It can also have more than one neuron in the output layer (cf 
Fig. 14.12). The output of each hidden neuron is passed through the activation func-
tion before it is summed by the neurons in the next layer. It has been found, how-
ever, that a feed-forward network with just one hidden layer of two neurons, and one 
output neuron, can predict breathing more or less as well as more complicated lay-
ered architectures [8, 27, 44]. We can therefore use such a simple network to learn 

Fig. 14.12 A general 
feed-forward network with 
multiple layers containing 
multiple neurons
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some important things about basic breathing prediction. The following examples of 
feed-forward ANN results for breathing prediction were all obtained with a single 
breathing amplitude (displacement of a chest marker) for the input signal, two neu-
rons in the hidden layer, a sigmoid activation function, and one output neuron (for 
the future signal amplitude). After initial training via LMS, the network was updated 
(adapted) each time a new breathing data point became available. To quantify the 
accuracy of breathing prediction, the dimensionless quantity of normalized root 
mean square error (eq. 14.5) was used to compare the predicted (Pi) and actual (Di) 
future amplitudes, for prediction horizons (i.e., lag times) ranging from 100  ms 
to 500 ms.

 
nRMSE D P Di i i i i= ( ) −( )



Σ Σ– /

/2 2 1 2

µ  (14.5)

Here μ is the mean of all of the observations.
There are several parameters to determine when designing the feed-forward neu-

ral network prediction filter—the length (in seconds) of the input signal history and 
the number of samples in that history (i.e., the sampling rate), the number of train-
ing epochs, and the training rate ∝ in the LMS updating rule (eq. 14.2). Without 
going into detail about the testing of the network, which is reported in detail in [48], 
it suffices to say that the performance of the network in predicting a variety of dif-
ferent breathing examples was explored by varying each of these network parame-
ters, to find the values that provided the best results. One obvious question to ask is 
whether a single network setup can do a reasonable job of predicting a wide range 
of breathing patterns, or if the filter setup needs to be optimized to each individual 
patient. To answer this question, the filter setup was first optimized for each patient 
breathing history, and its accuracy was noted. Then a globally optimal sampling 
length and rate, number of training epochs, and training rate was identified in the 
results and used to configure a standardized filter, which was then tested against all 
of the individual patient histories. Figure 14.13 shows the results [48].

Patients 1–14 were randomly selected from a cohort treated for lung cancer, 
and displayed a wide range of breathing patterns; patients 15–27 were healthy 
volunteers coached to regularize their breathing via audiovisual feedback [16, 
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17]. The standardized filter did essentially as well as the personalized filter for 
the healthy coached patients, and continued to do reasonably well even for the 
most erratic lung cancer patients. This offers encouragement that it is not 
always necessary to go through an involved filter optimization process for each 
patient.

The accuracy of any predictive filter can be expected to diminish if the breathing 
pattern changes over time, simply because the filter must retrain itself to adapt to the 
changes, and that takes time. This can be demonstrated by calculating a breathing 
regularity measure and then looking at prediction accuracy as a function of that 
measure.

For a finite length of continuous patient breathing signal S(t), the autocorrelation 
coefficient C(τ) is defined as the cross-correlation integral of S(t) with itself, at 
delay time τ:

 
C S t S t dtτ τ( ) = ∫ ( ) ( )–  (14.6)

For a stationary periodic signal the average value of C(τ) versus τ will be approx-
imately constant, while for a non-stationary (time-changing) signal the average of 
C(τ) will become smaller with increasing τ. We can characterize the stability of the 
signal by the inverse of the rate at which the average correlation coefficient decays 
with τ. Call this the correlation decay time. To compute the decay time, a 60 s win-
dow was set at a point in the breathing time series and C(τ) was computed for 
0 < τ < 60 s. The peak values of the positive half cycle of the autocorrelation coef-
ficient were plotted in a semi-log scale as a function of τ. The inverse slope of the 
graph gave the decay time for that particular position of the breathing signal win-
dow. A rapidly changing signal will have a short decay time; a slowly changing 
signal will have a long decay time; a perfectly stationary signal will have an infinite 
decay time.

Figure 14.14 shows the prediction accuracy of the ANN filter as a function of the 
breathing signal’s decay time (from [48]). As expected, rapidly evolving breathing 
patterns are harder to predict, no matter how well the filter is designed.

1.8
0

10

20

30

40

50

60

2 2.2 2.4 2.6

log (decay time)

prediction accuracy vs stability

n
R

M
S

E
 (

%
)

2.8 3 3.2 3.4

Fig. 14.14 The prediction 
accuracy of a neural 
network filter as a function 
of the stability of the 
breathing signal, as 
characterized by the decay 
time of its autocorrelation. 
Shorter decay times 
correspond to more rapidly 
changing breathing 
patterns (from [48])

14 Intelligent Respiratory Motion Management for Radiation Therapy Treatment



350

14.6  Advanced Neural Network Architectures

14.6.1  Quadratic Neural Unit

In a basic feed-forward neural network perceptron, the neuron makes a linear sum-
mation of its weighted inputs. It uses a sigmoid activation function to pass the neu-
ron output(s) of each layer to the next layer, where they are again combined in a 
linear summation. As noted earlier, without the nonlinear activation function con-
necting the layers, a multiple-layer perceptron reduces to a single layer perceptron. 
In a polynomial neural network, the neuron makes a higher-order polynomial com-
bination of the inputs. For example, a quadratic neural unit computes:

 
y w x xij ij i j= Σ  

Bukovsky et al. [6] have tested a neural network with a quadratic neural unit for 
predicting breathing time series. The network was trained via a Levenberg–
Marquardt algorithm adapted for the polynomial neurons. They found that it can be 
retrained in real time and achieved good accuracy out to a prediction horizon of 
one second.

14.6.2  Using a Kalman filter to Predict/Correct as Part 
of the Training Loop

Consider a system that is being observed via periodic data samples. Suppose each 
data sample fluctuates randomly due to the behavior of the system itself (plant 
noise) and uncertainty in the measurements (measurement noise). If the system’s 
evolving state is governed by a linear function, then the best estimate of the next 
sample is provided by the Kalman filter predictor, which is a continuously updating 
algorithm that takes its present estimate of the system’s state, makes a prediction of 
the next signal sample, combines it with the next available data measurement, and 
calculates a correction to update the state of the system, which is then recirculated 
via a prediction/correction loop. Such a filter continuously adapts to the evolution of 
the system.

A breathing signal has variability that can be divided between two sources—
irregularity in the actual breathing (plant noise) and errors in the observations (mea-
surement noise). This has inspired studies to predict breathing with a Kalman filter. 
However, the breathing system is nonlinear and consequently the Kalman filter 
must be generalized to an Extended Kalman Filter (EKF). The Extended Kalman 
Filter attempts to linearize the observations (typically via a Taylor expansion) so 
that the basic Kalman prediction/correction algorithm can be used. Unfortunately, 
this has proved problematic and the performance of an EKF for breathing has gener-
ally not been as favorable as other methods.

Looking back to Fig. 14.7, one sees that the weights are updated from the most 
recent error signal. These error signals also incorporate plant and measurement 
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noise, which suggests that an extended Kalman filter can be used to train an ANN 
[74]. In this application it would be used to calculate (predict) each successive 
update to the weights, and thus the state of the ANN, rather than model and update 
the breathing state itself. This could combine the advantages of both the ANN and 
the EKF. Figure 14.15 illustrates the strategy. This breathing prediction architecture 
has been studied by e.g., Lee et al. [33], who present the details for computing the 
EKF prediction/correction of the network weights.

A recurrent EKF-ANN with p outputs describes the system state with a vector of 
s neuron weights, which requires an error covariance matrix of size s2 and compu-
tational complexity of order O(ps2). This can become demanding when there are a 
large number of inputs to the network. However, it is possible to decouple the indi-
vidual weights in the EKF stage, so that the error covariance matrix becomes block- 
diagonal and the computational complexity is reduced to order O(ps) [33, 53].

14.6.3  A Network with Multiple Breathing Signal Inputs

The discussion of ANNs for breathing prediction and correlation has so far used the 
simple case of a single one-dimensional breathing signal S(t) supplied as input. In a 
clinical setting one can often have multiple sensors, each measuring up to three 
spatial degrees of freedom in movement. The CyberKnife (Accuray Incorporated, 
Sunnyvale CA) utilizes an array of optically tracked infrared emitters distributed on 
the patient’s chest and abdomen to record breathing. The breathing data are corre-
lated with periodic x-ray measurements of tumor position to provide a targeting 
signal to the linear accelerator, which makes compensating corrections to the 

Fig. 14.15 A recurrent 
network employing an 
extended Kalman filter to 
compute the updates to the 
weights

14 Intelligent Respiratory Motion Management for Radiation Therapy Treatment



352

treatment beam’s direction [60, 61]. This has the advantage of multiple redundant 
measurements to reduce the influence of measurement noise and the capacity to 
determine during training whether the patient is a chest or abdominal breather.

The most basic generalization to m breathing signal sources is simply to make up 
an input layer that provides n taps of each signal, for a total of nm input nodes. 
However, for a breathing patient the m sets of input samples will be correlated with 
one another. In the EKF-ANN this correlation will be reflected in the error covari-
ances. This can be dealt with by coupling the Kalman filters for each signal channel 
(while keeping the weights decoupled, as above). This has been studied by Lee et al. 
[33]. Alternatively, one can make a principal components analysis (PCA) of the 
signals to obtain an input vector of maximally uncorrelated data.

14.6.4  Deep Learning Neural Networks for Prediction

One of the limitations of conventional neural networks used for sequential pattern 
recognition is their tendency to forget older input data. This is partially mitigated in 
the short term in a recurrent neural network, but when a network is retrained in real 
time to adapt to a changing input, the older learning parameters are deliberately 
modified in response to the newer, different input signal. This has the advantage of 
keeping the network up to date, but limits the ability of the network to learn and 
remember its experiences with a large set of prior data. To mitigate this shortcom-
ing, Long Short-Term Memory (LSTM) networks were developed [23].

In adaptive retraining for breathing prediction, the basic network architecture 
(the model) is fixed for a particular patient, but the learning parameters are modified 
in real time in order to adapt to changes in the patient’s breathing. It has been found 
that, for a cohort of patients with regular breathing patterns, a standard network 
model could be used for all of the patients, but when patient breathing becomes 
irregular, it becomes increasingly favorable to tailor the network model to the indi-
vidual patient. Tailoring the network model to each patient is a time-consuming 
process that must be accomplished before treatment begins. It would be highly 
desirable to have a standardized network architecture that has been developed and 
trained on a cohort of patients of widely variable breathing patterns. Such a network 
needs “memory” of each patient that it has seen in the past. Lin et al. [35, 36] have 
applied a LSTM network model to a cohort of patients whose individual breathing 
patterns were recorded with the Real-Time Position Measurement data (RPM, 
Varian Medical Systems, Palo Alto, CA). Wang et  al. [72] similarly apply deep 
Long Short-Term Memory to the breathing prediction problem.
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14.7  Support Vector Regression (SVR) as an Alternative 
to Neural Networks for Breathing Prediction

One of the drawbacks to a conventional feed-forward neural network for pattern 
recognition is its vulnerability to becoming trapped in local minima, leading it to 
miss the true loss function minimum. Feed-forward ANNs apply a hard decision 
boundary that can be distracted by outlier training data. This becomes more prob-
lematic as the multi-dimensional decision surface becomes fuzzy, with individual 
training examples overlapping so as to blur the true minimum. The concept of a 
support vector machine was developed by Vapnik [71] to overcome this problem. 
An SVM is a probabilistic learning algorithm that draws upon individual training 
examples in the same way as an ANN but uses a soft margin in the decision surface 
to allow the classifier to tolerate individual classification errors as long as they are 
less than some upper limit epsilon.

Minor variations of these algorithms are referred to as Support Vector Regression 
(SVR) [57]. Studies [7] have shown the SVR approach to achieve better time-series 
prediction accuracy when applied to breathing prediction for adaptive motion 
compensation.

14.8  Probabilistic Neural Networks

Another statistical learning algorithm is the so-called Probabilistic Neural Network 
(PNN) developed by Specht [66] in the 1960s at about the same time as Vapnik’s 
early work on the SVM. In a PNN, the training data are smoothed using a Parzen 
window [51] with a Gaussian kernel to provide a functional representation of the 
multi- parameter training data set and then individual classification inputs are located 
in that multi-parameter function space and their classification is assigned a probabil-
ity of being correct. This accommodates in a natural way both sparse training data 
sets and outliers in the data. Specht has shown that the PNN functions in the same 
way as a feed-forward neural network in which the sigmoid activation function has 
been replaced by an exponential function. These algorithms have been successfully 
applied to a variety of time-series prediction and forecasting problems, but at the 
time of writing there is no evidence of their application to respiratory time series.

14.9  Summary

The use of machine learning techniques to analyze and predict patient breathing and 
tumor motion patterns begins in the treatment planning stage, where they can be 
used to reduce the amount of CT imaging to characterize 4D movement. Adaptive 
breathing compensation during radiation therapy requires a means to compensate 
for inevitable lag times in the adaptation process by predicting tumor movement 
either directly from imaging data or indirectly from surrogate breathing data. 
Although breathing appears superficially regular in most individuals, it is actually 
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variable in period and amplitude. Furthermore, the relative movement of different 
parts of the anatomy under the influence of breathing can change over time, making 
it difficult to associate tumor movement with other surrogate movements. Machine 
learning algorithms offer an attractive way to emulate these complicated behaviors 
without recourse to biomechanical modeling. They are intrinsically capable of con-
forming to individual breathing patterns and adapting in real time to changes in 
breathing behavior.

The artificial neural network is a simple machine learning algorithm that has 
been shown to be effective at predicting breathing behavior. It offers a clear advan-
tage over a basic linear adaptive filter without much additional computational bur-
den [46]. More usefully, it has been found by numerous researchers that an 
acceptable level of prediction accuracy can be achieved with a very simple network 
architecture, and that adding feedback loops or more layers with more neurons often 
provides little or no further improvement [8, 27, 44]. Furthermore, it is not always 
necessary to customize the network architecture to each individual patient [48]. 
This is most clearly the case when steps are taken to regularize an individual’s 
breathing through training and feedback [48]. Nevertheless, deep learning neural 
networks have been shown to be capable of generalized training from cohorts of 
patients that exhibit variable breathing characteristics [35, 36].

While the latencies of various motion-adaptive therapy devices can be (and have 
been) systematically reduced, so that temporal prediction becomes less important in 
a tumor tracking system, the problem of tracking the tumor’s motion from surrogate 
breathing signals remains. This application of ANNs has not been studied as well as 
temporal prediction and invites further investigation.

The importance of intelligent breathing management during radiation therapy is 
evident in the large number of research studies devoted to it over the past twenty 
years. During that time, developers have progressed from simple linear filters to 
highly sophisticated machine learning and deep learning algorithms. The problem 
remains of significant interest to engineers and clinicians alike.
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15.1  Introduction

Outcome modeling plays an important role in oncology and treatment personaliza-
tion. This includes understanding response to different therapeutic cancer agents 
(chemo, radiation, check point blockade, etc.), treatment adaptation, and designing 
of future clinical trials, which will be the subject of Chapters 18 and 19, respec-
tively. Historically, the application of outcome models has accompanied oncology 
practices since its inception; however, it has since tremendously evolved from sim-
ple hand calculations of dosage based on experiences and simplified understanding 
of cancer behavior into more advanced computer simulation models, driven by 
exponential growth in patient-specific data and an acute desire to have more accu-
rate predictions of response [1].

The notion of outcome modeling is motivated by the clinical need to personalize 
treatment to individual patient’s cases. This concept originated from Hippocrates of 
Kos, the father of western medicine, 2500 years ago, who wrote: “different [drugs] 
to different patients, for the sweet ones do not benefit everyone, nor do the astrin-
gent ones, nor are all the patients able to drink the same things [2].” However, at the 
time of Hippocrates, physical and clinical exams were the only resources of infor-
mation. This has drastically changed due to recent advances in quantitative multi-
modality imaging (e.g., radiomics) and high-throughput biotechnology (genomics, 
proteomics, transcriptomics, metabolomics, etc.), which are the subject of Chap. 16. 
Together these information would form the Big data or the panOmics of oncology 
as depicted in Fig. 15.1 [3].

Radiation oncology, as a cancer treatment modality, has been historically at the 
forefront of modeling responses to therapy; however, recent clinical trials 
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examining treatment intensification in patients with locally advanced cancer have 
shown incremental improvements in local control and overall survival with several 
controversial results at instances [4] [5], in any case, radiation-induced toxicities 
remain major dose-limiting factors and likely culprit in such controversies [6–8]. 
Therefore, there is a need for studies directed toward predicting treatment benefit 
versus risk of failure. This is in addition to understanding how combining radiation 
with chemotherapy, surgery or most recently with immunotherapy can lead to 
improved outcome compared to either modality alone [9].

Clinically, the identification of such treatment predictors would allow for more 
individualization of cancer treatment plans. In other words, physicians may pre-
scribe a more or less intense single or multimodality regimen(s) for an individual 
based on model predictions of local control benefit and toxicity risk. Such an indi-
vidualized regimen would aim toward an optimized cancer treatment response 
while keeping in mind that a more aggressive treatment with a promised improved 
tumor control will not translate into improved survival unless severe toxicities are 
accounted for and limited during treatment planning. Therefore, improved models 
for predicting both local control and side effects should be considered in the optimal 
treatment management design process.

In this chapter, we consider the subject of outcome modeling in radiation oncol-
ogy as case study while highlighting similarities and differences when applied to 
other treatment modalities. We will provide an overview of the current status of 
data-driven outcome modeling techniques for predicting tumor response and side 
effects for patients who receive cancer treatment with special focus on the emerging 
role of machine and deep learning approaches to improve outcome modeling and 
response prediction. Then, we present examples of oncology data resources and its 
big data (panOmics) notion. Finally, we discuss the potentials and some of the chal-
lenging obstacles to applying bioinformatics and machine/deep learning strategies 

Fig. 15.1 The human body is a valuable resource for varying solid and fluid types of specimens, 
which can yield different -omics (genomics, proteomics, transcriptomics, metabolomics, 
radiomics) predictive biomarkers, in addition to dosimetric and clinical factors used in radiother-
apy that would undergo major processes of annotation, curation, and preparation before being 
applied into outcome modeling of treatment outcomes (e.g., tumor response, side effects) [3]
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to oncology outcome modeling. Interested reader in detailed treatment of this sub-
ject is recommended to check the dedicated textbook on this topic [1].

15.2  Outcome Modeling in Radiotherapy

Radiotherapy outcomes are usually characterized by two metrics: the tumor control 
probability (TCP) [10, 11] and the normal tissue complication probability (NTCP) 
[12] of surrounding normal tissues. TCP/NTCP models could be used during the 
consultation period as a guide for ranking treatment options [7, 8]. Alternatively, 
once a decision has been reached, these models could be included in an objective 
function, and the optimization problem driving the actual patient’s treatment plan 
can be formulated in terms relevant to maximizing tumor eradication benefit and 
minimizing complication risk [9, 13, 14]. Traditional models of TCP/NTCP models 
and their variations use information only about the dose distribution and fraction-
ation. However, it is well known that radiotherapy outcomes may also be affected 
by multiple clinical and biological prognostic factors such as stage, volume, tumor 
hypoxia [15, 16], etc. as depicted in Fig. 15.2. Therefore, recent years have wit-
nessed the emergence of data-driven models utilizing informatics techniques, in 

Fig. 15.2 Radiotherapy treatment involves complex interaction of physical, biological, and clini-
cal factors. The successful informatics approach should be able to resolve this interaction “puzzle” 
in the observed treatment outcome (e.g., local control or toxicity) for each individual patient [24]
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which dose-volume metrics are combined with other patient- or disease-based prog-
nostic factors [17–23].

15.3  Data Resources

In oncology, there is a large pool of “big data” that comprise but are not limited to 
patient demographics, treatment prescription, 3D and 4D anatomical and functional 
disease longitudinal imaging features (radiomics), in addition to genomics and pro-
teomics data derived from peripheral blood and tissue specimens (Fig. 15.1). In the 
case of radiotherapy, there is also an option of volumetric dosimetric data about 
radiation exposure to the tumor and surrounding tissues. Accordingly, this big data 
in oncology could be divided based on its nature into four categories: clinical, dosi-
metric, imaging, and biological. These four categories of radiotherapy big data are 
described in the following.

15.3.1  Clinical Data

Clinical data in oncology and particularly in chemoradiotherapy typically refers to 
cancer diagnostic information (e.g., site, histology, stage, grade, etc.), patient- 
related characteristics (e.g., age, gender, co-morbidities), and physiological metrics 
(e.g., pulmonary function measurements, heart/pulse rates, blood cell counts, body 
mass index (BMI)). Prior to the era of genetic profiling, these clinical variables were 
considered the only gold standard for clinical management and decision-making in 
oncology. From an informatics perspective, the mining of such data could be chal-
lenging particularly if the data is unstructured as typically the case; however, there 
are good opportunities for applying natural language processing (NLP) techniques 
to assist in the organization of such data [25].

15.3.2  Dosimetric Data

This type of data is related to the treatment planning process in radiotherapy or the 
chemical agent in chemotherapy. In radiotherapy, which involves radiation dose 
simulation using computed tomography imaging, specifically dose-volume metrics 
derived from dose-volume histograms (DVHs) graphs. Dose-volume metrics have 
been extensively studied [17–20] in the radiation oncology literature for outcome 
modeling [26, 27]. These metrics are extracted from the DVH such as volume 
receiving certain dose (Vx); minimum dose to x% volume (Dx); mean, maximum, 
and minimum dose; etc. More details are in our review chapter [28]. Moreover, we 
have developed a dedicated software tool called “Dose response explorer” (DREES) 
[29] for deriving these metrics and modeling of radiotherapy response.

There are different categories of chemical agents that aim on eradicating tumor 
cancers [30]. Among the most common ones are alkylating agents, which substitute 
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an alkyl groups (hydrocarbon) for hydrogen atom of organic compound including 
DNA (e.g., Temozolomide). There are also antibiotics (e.g., Doxorubicin, 
Blemoycin). Another common one is antimetabolites (e.g., Methotrexate, 
5-Fluorouracil, Taxanes, vinca alkaloids). Other agents that do not fall into any of 
these classes include: Platinum compounds (Cisplatin) and topoisomerases (DNA 
winding enzymes) inhibitors. Recently, more signaling pathway targeted agents 
have been developed such anti-EGFR such as Cetuximab or Erbitux [31]. In addi-
tion to the agent type and dosage, the timing of the administration of the agent influ-
ences treatment response. Chemotherapy could be administrated after the completion 
of the local treatment such as radiation and is called adjuvant chemotherapy, before 
the local treatment and is called induction chemotherapy, or given during local treat-
ment and is called concurrent chemotherapy. In particular, concurrent chemoradia-
tion has been demonstrated to be effective in the treatment of several cancers, in 
which the chemotherapy agent can act as a radiosensitizer by aiding the destruction 
of radiation resistant clones or act systematically and potentially eradicate distant 
metastases [32].

15.3.3  Radiomics (Imaging Features)

Cancer patients are treated based on observational assessment from diagnostic imag-
ing particularly computed tomography (CT) in combination with other clinical fac-
tors [33]. Information from multiple imaging modalities could be used to improve 
treatment monitoring and prognosis in different cancer types. For example, physio-
logical information (tumor metabolism, proliferation, necrosis, hypoxic regions, 
etc.) can be collected directly from nuclear imaging modalities such as single- photon 
emission computed tomography (SPECT) and positron emission tomography (PET) 
or indirectly from magnetic resonance imaging (MRI) [34, 35]. The complementary 
nature of these different imaging modalities has led to efforts toward combining 
information to achieve better treatment outcomes. For instance, PET/CT has been 
utilized for staging, planning, and assessment of response to chemoradiation therapy 
[36, 37]. Similarly, MRI has been applied in tumor delineation and assessing toxici-
ties in head and neck cancers [38, 39]. Moreover, quantitative information from 
hybrid-imaging modalities could be related to biological and clinical endpoints, a 
new emerging field referred to as “radiomics” [40, 41]. Potential of this new field to 
monitor and predict response to chemoradiotherapy has been demonstrated in esoph-
ageal [42], head and neck [43, 44], cervix [43, 45], lung [46] [47], and sarcoma [48] 
cancers, and more recently in the prediction of immunotherapy response [49, 50], in 
turn allowing for adapting and individualizing treatment [51].

15.3.4  Biological Markers

A biomarker is defined as “a characteristic that is objectively measured and evalu-
ated as an indicator of normal biological processes, pathological processes, or 
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pharmacological responses to a therapeutic intervention” [52]. Biomarkers can be 
categorized based on the biochemical source of the marker into exogenous or 
endogenous.

Exogenous biomarkers are based on introducing a foreign substance into the 
patient’s body such as those used in molecular imaging as discussed above. 
Conversely, endogenous biomarkers can further be classified as (1) “expression bio-
markers,” measuring changes in gene expression or protein levels or (2) “genetic 
biomarkers,” based on variations, for tumors or normal tissues, in the underlying 
DNA genetic code. Measurements are typically based on tissue or fluid specimens, 
which are analyzed using molecular biology laboratory techniques [53]. Aggregation 
of large-scale genetic biomarkers has been the subject of large national efforts such 
as The Cancer Genome Atlas (TCGA) Data Portal, which provides a very useful 
platform for researchers to analyze datasets generated by TCGA. It contains clinical 
information, genomic characterization data, and high-level sequence analysis of the 
tumor genomes in different cancer types [54–57].

15.4  Database Technologies for Machine Learning 
in Oncology

Traditionally, relational database management systems (RDBMS) have been the 
technology of choice for storing and querying oncology information. RDBMS are 
based on organizing the data relation schema in a tabular format (sets of rows 
(tuples) and columns (attributes)) in accordance with Codd’s 12 rules [58]. SQL 
(structured query language) is a fourth generational programming language that is 
used to process the data in an RDBMS. RDBMS and SQL have been the driving 
technology for Electronic Health Record (EHR) management software including 
that of oncology. Several governmental, commercial, and open-source resources for 
EHR exist. For instance, in the United States, more than 50% of patient records are 
stored in the Epic systems (Verona, WI), privately held software, which employs an 
object-oriented RDBMS. In addition, there are open-source EHR systems; however, 
they did not receive traction.

Recently, there has been resurgence in NoSQL (not only SQL) database tech-
nologies. NoSQL allows for a blend of structured and unstructured data with no 
commitment to a schema unless needed and enjoys a remarkable horizontal scal-
ability for aggregating and querying massive datasets. Interestingly, the VistA EHR 
system developed by department of Veterans affairs in the 1960s is based on the 
MUMPS (Massachusetts General Hospital Utility Multi-Programming System), 
which is a key-value NoSQL database system. Today, the NoSQL open-source 
Hadoop architecture is considered the platform of choice for processing big data 
and potentially oncology data. The enabling technology that sprung its big data 
analytics potential is called MapReduce, which is a new parallel programming para-
digm that involves two steps: a Map function for filtering and sorting and a Reduce 
function for grouping and aggregation of data. However, an issue that may impact 
NoSQL adoption in some instances is that the common so-called ACID (Atomicity, 
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Consistency, Isolation, Durability) properties of a reliable transactional processing 
may need to be compromised to achieve higher analytical performance. As a com-
promise, this created market for NewSQL that rely on storing large data in memory, 
which is advocated by M. Stonebraker (VoltDB, Inc., Bedford, MA).

15.5  Pan- Vs. P-OMICs

Due to advances imaging and biotechnology radiotherapy data has witnessed tre-
mendous exponential growth in the past decade; however, number of cancer inci-
dences has generally plateaued as depicted in Fig. 15.3. The fact that p (variables) 
> > n (samples) constitute a serious challenge for class inference methods of statisti-
cal learning. This p-omics phenomenon may yield undesirable effects such as spuri-
ous correlations, echo chamber anomalies, Yule–Simpson reversal paradox, or 
misleading ghost analytics as discussed in the following.

15.5.1  Spurious Relationship

This pitfall commonly emerges in big data analysis when two variables have no true 
relationship; however, such one may be wrongly inferred due to confounding effects 
[59]. This is an important process when attempting to identify a biomarker of 
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information from Health Affairs 2008, and genomics from the Nucleic Acids Research archive
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chemoradiation response, for instance. The famous example of such a case is the 
association of the number of ice cream sold and increased risk of drowning; the 
confounding effect or lurking explanatory variable is simply warm seasons. 
Understanding of the problem setup and possible prior knowledge of potential con-
founding effects is helpful in mitigating such effect.

15.5.2  Echo Chamber Effect

This happens when a relationship in the data is magnified by the data aggregation 
process itself in a cyclic manner [60]. This is typically a sampling problem (selec-
tion bias), in which the analyzed sample is not representative of the intended popu-
lation. A common example is encountered in meta-analyses of previous oncology 
biomarker study findings, where negative results are typically less likely to be pub-
lished [61].

15.5.3  Yule–Simpson Paradox

This is reverse effect of the echo chamber, where a true association is found in small 
datasets but lost or even reversed when larger data is aggregated. This paradox was 
reported by Simpson in the analysis of contingency tables in interpreting second- 
order interactions [62]. A lauded example in cancer research of this paradox is noted 
in the backlash generated by the paper by Tomasetti and Vogelstein that implied that 
variations in cancer risk are mainly explained by the number of stem cell divisions 
[63], a mere “bad luck” issue irrespective of the environment. This has been debated 
vigorously demonstrating selection bias and Yule–Simpson effects in the performed 
data analysis [64]. A common pitfall that could result in this paradox can happen 
when not accounting for known patient characteristics such as age and gender when 
conducting population studies. For instance, it is known that there exists a negative 
relationship between medicine dosages and recovery in both males and females; 
however, when the two group are combined together, a surprising positive relation-
ship emerges as shown in Fig. 15.4 [65]. A possible remedy for this effect is using 
stratification by variables or more systematically performing unsupervised cluster-
ing to uncover such sub-population effects.

15.5.4  Ghost Analytics

This refers to erroneous (mis-) using of statistical tests or learning algorithms when 
analyzing large datasets. For instance, this problem arises when not accounting for 
assumptions embedded in a statistical test before applying it. A classical example is 
encountered when conducting multiple comparisons and reporting a “significant” 
p-value of the null hypothesis testing yielding misleading results by not adjusting 
the level of Type 1 error. Interestingly, when statistician R. Fisher introduced the 
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notion of p-values in the 1920s, he did not intend to have it as a definitive test rather 
simply as an informal way to judge whether association evidence was worthy of a 
second look. Therefore, it is necessary to understand the assumptions made in a 
statistical test before attempting to apply it in order to achieve meaningful results.

15.6  Modeling Methods

Modeling techniques in oncology in general and radiation oncology in particular 
could be divided generally into bottom-up and top-down approaches as depicted in 
Fig. 15.5. The focus of this review will be on top-down approaches, while bottom-
 up methods are described for completeness and as a way to constrain the search 
space when conducting data mining exercises.

15.6.1  Bottom-up Approaches for Modeling Oncology Response

These approaches utilize first principles of physics, chemistry, and biology to model 
cellular damage temporally and spatially in response to treatment. Typically, they 
would apply advanced numerical methods such as Monte-Carlo (MC) techniques to 
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estimate the molecular spectrum of damage in clustered and not-clustered DNA 
lesions (Gbp−1 Gy−1) [66]. For instance in the case of radiotherapy, the temporal and 
spatial evolution of the effects from ionizing radiation can be divided into three 
phases: physical, chemical, and biological in a multi-scale fashion [67]. This infor-
mation, however, could be used to guide incorporating prior knowledge or imposing 
constraints on a data mining approach narrowing its search space for optimal 
answers.

15.6.2  Top-Down Approaches for Modeling Oncology Response

These are typically phenomenological (non-mechanistic) models and depend on 
parameters available from the collected clinical, dosimetric and/or biological data 
[3]. In the context of data-driven and multi-variable modeling of outcomes, the 
observed treatment outcome is considered as the result of functional mapping of 
several input variables [68]. Mathematically, this is expressed as f(x; w∗) : X → Y, 
where x ∈ ℝN is composed of the input metrics (patient disease-specific prognostic 
factors, dosimetric metrics, or biological markers). The expression y ∈ Y is the cor-
responding observed treatment outcome. The variable w∗ includes the optimal 
parameters of the model f(∙) obtained by the learning based on a designated objec-
tive function. Learning is defined in this context of outcome modeling as estimating 
dependencies from data [27]. Based on the human–machine interaction, there is two 
common types of learning: supervised and unsupervised. Supervised learning is 
used when the endpoints of the treatments such as tumor control or toxicity grades 
are known; these endpoints are provided by experienced oncologists following 
institutional or National Cancer Institute (NCI) criteria and it is the most commonly 
used learning method in outcomes modeling. Nevertheless, unsupervised methods 
such as clustering methods or principal component analysis (PCA) can be used to 
reduce the learning problem dimensionality through feature extraction, and to aid in 
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the visualization of multivariate data as well as in the selection of the optimal learn-
ing method parameters for supervised learning methods [69].

It is noted that the selection of the functional form of the model f(∙) is closely 
related to the prior knowledge of the problem. In mechanistic models, the shape of 
the functional form is selected based on the clinical or biological process at hand; 
however, in data-driven models, the objective is usually to find a functional form 
that best fits the data [70]. Below we will highlight this approach using logistic 
regression and artificial intelligence methods in cases where the clinical endpoints 
are expressed as a binary dichotomy (failed/did not fail) as commonly practiced. 
However, the methods could be extended in cases with more than two classes or the 
endpoint is a continuous variable.

15.6.2.1  Logistic Regression
In oncology outcomes modeling, the response will usually follow an S-shaped 
curve. This suggests that models with sigmoidal shapes are the most appropriate to 
use [21–24, 71–74]. A commonly used sigmoidal form is the logistic regression 
model, which has nice numerical stability properties. The logistic model is primar-
ily used in a binary classification, i.e., response y = 0 or y = 1. The probability of y 

equaling 1 can be written as, p y f
e w xT=( ) = ( ) =

+ −
1

1

1
x w; , where w are model 

parameters, whose optimal value w∗ can be determined through maximum likeli-
hood estimation [75]. Explanatory variables x containing patient-specific informa-
tion may be chosen in a stepwise fashion to define the abscissa of the regression 
model f(∙). Except for original patient-specific variables, users may determine 
whether interaction terms or higher order variables should be added. Penalty tech-
niques based on ridge (L2-norm) or Lasso (L1-norm) methods could aid in the 
process by eliminating least relevant variables and imposing sparsity conditions 
[76]. An alternative solution to ameliorate this problem is offered by applying 
machine learning model selection methods based on cross-validation [75]. An 
example is provided below.

A Logistic Outcome Modeling Example
The logistic model is applied to predict local progression (LP) y (progression: y = 1, 
control: y = 0) in non-small-cell lung cancer (NSCLC) patients in TCGA-LUAD 
[77] and TCGA-LUSC [78] datasets. Only the 45 patient who received external 
beam radiotherapy as adjuvant therapy, with primary tumor as treated sites, and had 
complete dosimetric/ LP follow-up information were included in the analysis. 
Explanatory variables x: x ∈ ℝ7 in this analysis include patients’ gender, T stage, N 
stage, grouping stage, prior malignancy, tobacco history, and radiation total dose. 
Examples illustrating explanatory variables and responses in three randomly 
selected patients are shown in Table 15.1. The logistic model was implemented with 
python package scikit-learn [79]. In the code, X : X ∈ ℝS × N stands for explanatory 
variable x for S patients, Y : Y ∈ ℝS stands for local progression for S patients. A 
summary of LP prediction results by our logistic model is presented together with 
ground truth (Fig. 15.6).
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Code:
from sklearn.linear_model import LogisticRegression
# model building
clf = LogisticRegression(random_state=0, solver='lbfgs').fit(X, Y)
Pred=clf.predict(X)
Pred_prob=clf.predict_proba(X)
sc=clf.score(X, Y)
#estimated optimal parameters
w_est=clf.coef_.reshape(-1,1)
b_est=clf.intercept_
# the trained model
pred_fucntion=np.matmul(X,w_est)+b_est

15.6.2.2  Machine Learning Methods
Machine learning techniques are a class of artificial intelligence (e.g., neural net-
works, decision trees, support vector machines), which are able to emulate human 
intelligence by learning the surrounding environment from the given input data and 
can detect nonlinear complex patterns in such data. In particular, neural networks 
were extensively investigated to model post-radiation treatment outcomes for cases 
of lung injury [80, 81] and biochemical failure and rectal bleeding in prostate cancer 
[82, 83]. A rather more robust approach of machine learning methods is support 
vector machines (SVMs), which are universal constructive learning procedures 
based on the statistical learning theory [84]. For discrimination between patients 
who are at low risk versus patients who are at high risk of treatment, the main idea 
of SVM would be to separate these two classes with “hyper-planes” that maximize 
the margin between them in the nonlinear feature space defined by an implicit 

Table 15.1 TCGA patients’ specific information that were used in LP prediction

gender T N stage prior M tobacco dose LP
1 M T3 N0 T3 No 4 60 0
2 M T1 N1 T1 No 3 64 0
3 F T1 N2 T1 No 2 50 0
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kernel mapping [10, 11, 70]. However, these methods have been stigmatized as 
black boxes, hindering their application in practical clinical contexts.

In an effort, to alleviate the black box stigma of generic machine learning meth-
ods, more system-like approaches methods based on graphical approaches such as 
Bayesian networks (BNs) have been increasingly used in outcome modeling of can-
cer [85–87]. A BN provides graphical representation of the relationships between 
the variables represented as nodes in a directed acyclic graph (DAG), which encodes 
the presence and direction of relationship influence among the variables themselves 
and the clinical endpoint of interest. The relationship between parent and child 
nodes is modeled by conditional probabilities using Bayes chain rule. These meth-
ods are also robust for variable uncertainties and missing data, which would make 
them excellent candidates for clinical applications [88, 89].

For machine learning methods, a modeling example is provided below.

A Machine Learning Outcome Modeling Example
A multi-layer perceptron (MLP) is a fundamental neural network architecture and is 
the building block for deep learning applications [90]. It is composed of several lay-
ers, each with a number of nodes. Those nodes are interconnected in a feed-forward 
way that nodes have direct connection to the nodes in the subsequent layers. To calcu-
late the nodes’ value, a so-called activation function [91] is usually applied to a 
weighted sum of nodes in the previous layer to add non-linearity. Logistic function 
which is also known as sigmoid function is a common choice of activation. Specifically, 
logistic regression can be regarded an extreme case of MLP without any hidden layer.

An MLP with 2 hidden layer is applied to the same task of predicting LP in TCGA 

dataset. The dataset is randomly split into a training set (
1

3
)  and a test set (

2

3
). All 

the explanatory variables were normalized to mean 0 and standard variation 1 to 
avoid numerical instability. The model was implemented with python package 
Pytorch [92]. Receiver operating characteristic (ROC) curves of LP prediction results 
are illustrated with calculated areas under ROC curve (AUC) for both training and 
test sets (Fig. 15.7).
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Code:

import torch
#define the model
class MLP_NN(torch.nn.Module):

def __init__(self, input_dim, hidden_dim_1,hidden_dim_2, 
output_dim):

super(MLP_NN, self).__init__()
self.L1=torch.nn.Linear(input_dim,hidden_dim_1)
self.D1=torch.nn.Dropout(0.2)
self.L2=torch.nn.Linear(hidden_dim_1,hidden_dim_2)
self.D2=torch.nn.Dropout(0.2)
self.L3=torch.nn.Linear(hidden_dim_2,output_dim)

def forward(self,x):
a1=torch.relu(self.L1(x))
a1=self.D1(a1)
a2=torch.relu(self.L2(a1))
a2=self.D2(a2)
outputs=torch.sigmoid(self.L3(a2))
return outputs

#initialize the model
model=MLP_NN(input_dim,hidden_dim,hidden_dim,output_dim)
#use binary cross entropy as loss
criterion=torch.nn.BCELoss(reduction='mean')
#use Adam optimizer
optimizer=torch.optim.Adam(model.parameters(), lr=learning_rate)
for i in range(num_epoch):

#training
model.train()
optimizer.zero_grad()
y_pred=model(X_train_torch.float())
#define the loss
loss=criterion(y_pred,Y_train_torch.float())
loss.backward()
optimizer.step()
# evaluate on test data
model.eval()
y_pred_test=model(X_test_torch.float())

loss_test=criterion(y_pred_test,Y_test_torch.float())

S. Cui and I. El Naqa



375

15.7  Software Tools for Outcome Modeling

Many of the TCP/NTCP outcome modeling methods require dedicated software 
tools for implementation. Examples of such software tools in the literature in the 
case of radiotherapy are BIOPLAN and DREES. BIOPLAN (BIOlogical evalua-
tion of treatment PLANs) uses several analytical models for evaluation of radio-
therapy treatment plans [93], while DREES is an open-source software package 
developed by our group for dose-response modeling using analytical and data-
driven methods [94] presented in Fig. 15.8. It should be mentioned that several 
commercial treatment planning systems have currently incorporated different TCP/
NTCP models, mainly analytical ones that could be used for ranking and biological 
optimization purposes. A discussion of these models and their quality assurance 
guidelines is provided in TG-166 [18]. In the general context of machine and deep 
learning applications, several open-source packages like Pytorch can be used as 
presented in the examples of Sect. 15.5.2. Further discussion of available software 
tools is provided in Chap. 7.

Fig. 15.8 DREES allows for TCP/NTCP analytical and multivariate modeling of outcomes data. 
The example is for lung injury. The components shown here are Main GUI, model order, and 
parameter selection by resampling methods, and a nomogram of outcome as function of mean dose 
and location
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15.8  Discussion

In the era of personalized medicine in oncology, an multimodality and multidisci-
plinary approach that provides a unique combination of clinical, physical, techno-
logical, and biological data could be evaluated as an ideal case study for employing 
big data analytics to improve treatment effectiveness and outcomes in medicine. 
Oncology data is comprised of clinical patient characteristics, varying imaging 
acquisitions, laboratory and biochemical measurements, etc. carrying all the hall-
marks of big data. It is believed that big data analytics hold great promise to improve 
safe treatment management and enable development of better clinical decision sup-
port systems for personalized medicine as lauded by the NIH Personalized Medicine 
Initiative (PMI). Furthermore, big data analytics has been highlighted in the 
American Society of Clinical Oncology (ASCO) progress report as one of the 
promising opportunity in the fight against cancer as envisioned in the development 
of its data aggregation portal known as CancerLinQ [95]. The same sentiment has 
been echoed in Radiation Oncology [96].

The path for data collection and aggregation in oncology has been traditionally 
implemented to develop a hypothesis based on a clinical or experimental observa-
tion then test this hypothesis in a controlled clinical trial institutionally, then multi-
institutionally if it deemed promising. This path generally can account for about 3% 
of all patients’ data which are generated and stored during regular clinical pro-
cesses, with 97% of the data, termed “dark data” being not collected. However, the 
dark data are generally unstructured, untrusted, and fails to be useful for improving 
research, quality assessment, or clinical care. It is this “invisible data” that oncology 
Big Data initiatives such as CancerLinQ aim to bring to light. However, to make 
such data visible would require both cultural changes that would respect standard-
ized lexicons and proper curation of this data on a routine basis. This would neces-
sitate procedures that facilitate the data aggregation process, and local and national 
data champions within the oncology community. Moreover, making this data more 
visible would also need collaboration between all stakeholders to develop infra-
structures and rigorous procedures to maintain its security and eliminate lingering 
patient privacy concerns.

New database technologies such as NoSQL or NewSQL whether terrestrial or in 
the cloud will yield better storage and query of oncology data while allowing appli-
cation of more advanced analytics in real time as part of a clinical quality assurance 
or improvement program. The MapReduce framework allows embedding of 
machine learning algorithms as part of its architecture. This technology would work 
well with parallelizable algorithms. However, many oncology modeling schemes 
particularly ones that involve iterative or gradient descent optimization techniques 
do not lend themselves naturally to this framework. This would require further 
investigation to overcome this limitation and to exploit such technologies for oncol-
ogy real-time analytics.

One of main challenge to big data analytics in oncology remains the inherent 
p-omics versus pan-omics problem. In the presented examples using primarily typical 
applications in oncology, we demonstrated different methods to mitigate this effect 
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such as using prior knowledge, information theory techniques, ensemble of machine 
learning, or different combinations of all these methods. Issues related to echo cham-
ber or Yule–Simpson paradox need also to be carefully tested in the context of big data 
in oncology. However, the role of big data and its challenges is expected to grow as 
more current dark data being brought into light with many missing or poorly curated 
information and the pool of applications is ever expanding. This problem is further 
exacerbated when dealing with multiple clinical endpoints each may lead to different 
relationships with the input data. Moreover, despite decades of research many issues 
in dealing with multiple clinical or biological endpoints remain open [97]. The typical 
practice in oncology has been to optimize each point independently or to use heuris-
tics to combine multiple endpoints in utility functions in order to account for compet-
ing risk effects and quantifying their subjective desirability [98]. Alternatively, such 
utilities could be presented as a multi-output system that would jointly optimize the 
prediction of the competing endpoints, of course, on the expense of increased sample 
size requirements posing further challenges to big data in oncology. Therefore, it is 
paramount to develop oncology- specific approaches that exploit bottom-up biological 
knowledge in cancer combined with advanced information theoretic and machine/
deep learning methodologies to develop hybrid models that can mitigate current chal-
lenges of noisy analytic pitfalls and achieve the big data promise in cancer research.

15.9  Future Research Directions

The ability to maintain high-fidelity large-scale data for oncology studies remains a 
major challenge despite the high volume of clinical generated data on almost daily 
basis. It is paramount to implement FAIR (Findable, Accessible, Interoperable, 
Reusable) guiding principles for scientific data management to achieve the desired 
goals of precise outcome modeling, especially with machine/deep learning 
approaches [99]. In the case of radiation oncology, for instance, there have been 
several ongoing institutional and multi-institutional initiatives such as the RTOG, 
radiogenomics consortium, and EuroCAT to develop such infrastructure; however, 
there is plenty of work to be done to overcome issues related to, data sharing hur-
dles, patient confidentiality issues, lack of signaling pathways databases of radiation 
response, development of cost-effective multicenter communication systems that 
allows transmission, storage, and query of large datasets such as images, dosimetry, 
and biomarkers information. The use of NLP techniques is a promising approach in 
organizing unstructured clinical data. Dosimetry and imaging data can benefit from 
existing infrastructure for Picture Archiving and Communication Systems (PACS) 
or other medical image databases. Methods based on the new emerging field of 
systems radiobiology will continue to grow on a rapid pace, but they could also 
benefit immensely from the development of specialized radiation response signal-
ing pathway databases analogous to the currently existing pharmacogenomics data-
bases. Data sharing among different institutions is a major hurdle, which could be 
solved through cooperative groups or distributed databases by developing in a 
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cost- effective manner the necessary bioinformatics and communication infrastruc-
ture using open-access resources through partnership with industry.

Data quality is as important as data volume in big data analytics. Some important 
aspects of data quality in healthcare may include “completeness” which requires all 
data elements are present, “accuracy” which requires data are of the original source, 
“reliability” which requires data remain consistent, “legibility” which requires data 
(whether written, transcribed, or printed) should be readable, and “timeliness” 
which requires clinical information should be documented as event occurs or treat-
ment is performed without much delay. Especially, efforts should be made to avoid 
biases in the data including age, gender and race, as these biases could potentially 
lead to AI algorithms that aggravate health care disparity, i.e., AI models resulting 
in misleading decision support for minority groups which are underrepresented. To 
ensure data quality, standards for healthcare documentation can be developed and 
implemented in radiation oncology. Routine monitoring can also be carried out to 
aid data quality improvement. In this process, quantitative metrics such as Shapley 
Value [100] should be developed and used as a guide to make evaluation and detect 
any abnormality that may occur.

To make data-driven outcome models real clinical tools, efforts should be made 
to improve interpretability of machine learning algorithms. Interpretability is par-
ticularly important as it can help act as fail-safe against scenario where algorithms 
may produce flawed results due to unforeseen bugs. Existing machine learning 
algorithms, specifically deep learning algorithms are known to suffer from a trad-
eoff between accuracy and interpretability. Hence, more work regarding interpret-
ing and explaining machine learning algorithms’ decisions [101] is expected. 
Specifically, human-in-to-loop (HITL) [102] concept which can guide to optimize 
entire learning process by introducing human-computer interaction into the system 
may be used in model development. Machines are recognized for their capabilities 
of learning from vast dataset, while humans can make descent decisions even with 
scare information. Incorporating experts’ intelligence into AI systems may improve 
both accuracy and interpretability for practical decision-making in radiation oncol-
ogy clinic.

15.10  Conclusion

Recent evolution in medical imaging and biotechnology has generated enormous 
amount of big data that spans clinical, dosimetric, imaging, and biological markers. 
This data provided new opportunities for reshaping our understanding of treatment 
response and outcome modeling. However, the complexity of this data and the vari-
ability of tumor and normal tissue responses would render the utilization of advanced 
bioinformatics and machine learning methods as indispensable tools for better 
delineation of treatment complex interaction mechanisms and basically a corner-
stone to “making data dreams come true” [103]. However, it also posed new chal-
lenges for data aggregation, sharing, confidentiality, and quality. Moreover, 
oncology data and especially radiotherapy constitutes a unique interface between 
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physics and biology that can benefit from the general advances in biomedical infor-
matics research such as systems biology and available web resources while still 
requiring the development of its own technologies to address specific issues related 
to this interface. Successful application and development of advanced data com-
munication and bioinformatics tools for oncology big data so to speak is essential to 
better predicting treatment response to accompany other aforementioned technolo-
gies and usher significant progress toward the goal of personalized treatment plan-
ning and improving the quality of life for cancer patients. In the meantime, AI 
algorithms which balance the accuracy and interpretability are expected to be devel-
oped and serve as viable and reliable decision support tools in radiation oncol-
ogy clinic.
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16.1  Introduction

Radiographic imaging plays a critical role in radiation oncology, including radiation 
treatment planning and setup, evaluation of therapeutic response, and subsequent 
follow-up and disease monitoring [1–4]. In current clinical practice, the diagnostic 
interpretation of these images relies on visual assessment of few qualitative imaging 
traits. However, this approach does not allow a comprehensive characterization of 
the disease and has limited accuracy for prediction or assessment of treatment 
response and prognosis.

Radiomics is a powerful technique for discovering promising biomarkers by 
high-throughput quantitative analysis of medical images. This can be achieved 
either using a predefined set of manually handcrafted features, such as shape, histo-
gram, and texture, or automated feature extraction by deep learning such as convo-
lutional neural networks. By applying appropriate statistical or machine learning 
tools, predictive models can be developed to potentially improve the accuracy of 
outcome prediction. Radiogenomics is a closely related field that concerns the study 
of relationships between radiomic features at the tissue scale and underlying molec-
ular features at the genomic, transcriptomic, or proteomic level.

Radiomics have been applied to all types of standard-of-care clinical images 
such as CT, MRI, and PET [5–9]. Many studies have identified novel imaging sig-
natures that demonstrated improved diagnostic, prognostic, or predictive perfor-
mance over currently used imaging metrics, while radiogenomics may allow 
identification of the underlying biological basis of these imaging phenotypes [10–
17]. In the following sections, we will discuss the technical aspects, key findings, 
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and clinical applications of radiomics and radiogenomics with a focus on radiation 
oncology.

16.2  Technical Basis of Radiomics

Radiomics is multistep process that involves image acquisition, tumor segmenta-
tion, feature extraction, predictive modeling, and model validation. Figure  16.1 
shows a general workflow of radiomics, which includes both manually handcrafted 
features and automated feature extraction by deep learning (discussed in detail in 
Sect. 16.4).

Various radiographic imaging modalities such as CT, MRI, and PET are used in 
radiation oncology practice to provide direct visualization and evaluation of the 
underlying anatomical or physiological properties of the tumor [18]. Because these 
standard-of-care images are normally acquired for every patient undergoing radia-
tion treatment, they provide the necessary big imaging data for machine learning 
and modeling for outcome prediction.

For the radiomics approach with handcrafted features, segmentation of the region 
of interest—in most cases, the gross tumor, is required. For patients treated with 
radiotherapy, their primary tumors have already been manually delineated by radia-
tion oncologists and are available from the treatment planning system. These preex-
isting contours can greatly facilitate retrospective radiomic analysis. However, there 
can be significant variations in tumor contours among different oncologists. To 
account for intra- and inter-rater variations, it is important to evaluate the robustness 
of image features and effect on downstream analysis by perturbing the tumor con-
tours or using multiple delineations. Alternatively, tumor contoured can be defined 
more consistently using semiautomated segmentation algorithms with minimal 
human inputs [19–22].

Two types of handcrafted image features, semantic and agnostic, are often used 
to characterize the tumor phenotypes. Semantic features are defined based on exist-
ing radiology lexicon to qualitatively describe tumors and can be derived from the 
existing guidelines of specific imaging-reporting and data system by the American 
College of Radiology. On the other hand, agnostic features are computational 
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metrics with predefined mathematical formulations. There are various types of 
agnostic image features that describe tumor shape, intensity, and texture to capture 
intratumoral heterogeneity. The details of agnostic features have been reviewed 
elsewhere [7, 23]. Commonly used radiomic features have been integrated into 
open-source software or commercial software platform. Among these [24, 25], 
Deasy and colleagues have provided an open-source platform, known as CERR [26] 
(http://www.cerr.info/), to prototype algorithms for radiomic analysis specifically 
for radiotherapy research.

Given the radiomics features for the tumor phenotypes, machine learning algo-
rithms can be applied to discover and quantify their relations to relevant clinical 
endpoints or genomic traits. Supervised learning such as regression or classification 
methods are commonly used depending on the type of targeted variables being con-
tinuous values or class labels. Due to the large number of features compared with a 
relatively small number of samples, feature selection is an essential step to reduce 
the risk overfitting [27]. Image features that show minimal changes to tumor con-
tour variations and minimal redundancy or overlap with other features may be pref-
erentially selected. Various feature selection algorithms, including stepwise forward/
backward selection and lasso, can be used to identify the most informative features 
to fit the prediction model. Cross validation is usually applied to minimize the 
potential feature selection bias. In addition to building predictive models with 
supervised learning algorithms, it is also possible to apply unsupervised clustering 
algorithms to the radiomic features in order to discover novel subtypes for a given 
disease [13, 14].

After initial discovery and training of promising signatures, any radiomics-based 
model should be tested in independent, preferably multiple external cohorts. The 
key for rigorous validation is that training and testing should be entirely separate 
and no information leakage should occur between the two procedures [28]. In addi-
tion, it is also important to evaluate the relationship between the newly proposed 
radiomics signatures and known clinical and pathologic factors. Those radiomic 
signatures that provide independent prediction power in a multivariable model are 
more likely to add clinical value for patient management.

16.3  Key Findings and Clinical Applications

In this section, we highlight some recent studies that may be potentially relevant for 
improving patient management in radiotherapy. Given the tremendous growth in 
radiomics research [5–8, 29–35], interested readers are referred to recent reviews.

Aerts and colleagues proposed a CT-based radiomics signature to predict overall 
survival in non-small cell lung cancer (NSCLC) patients treated with radiotherapy 
[36]. They extracted over 400 computational features from CT images to describe 
tumor intensity, shape, texture, and wavelet. Using 4 features selected from each 
category, they constructed a radiomic signature in a training cohort of over 400 
patients and confirmed its prognostic value in two additional cohorts. Since publica-
tion of this landmark study, several groups have attempted to independently validate 
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this signature, which led to mixed results [37]. Potential concerns mostly regard 
reproducibility of the radiomics signature, and the fact that it is highly correlated to 
tumor size and volume [38], raising questions about its additive value beyond what’s 
already known. The other issue is using overall survival as an endpoint, which is 
confounded by many non-disease related factors, and is less useful for guiding 
management.

In another radiomics study focusing on early stage NSCLC, Wu et al. investi-
gated quantitative radiomic features of FDG-PET and CT for predicting distant 
metastasis after stereotactic ablative radiotherapy (SABR) [39]. Based on image 
features characterizing tumor morphology and intratumoral metabolic heterogene-
ity, they built a radiomic signature which significantly improved the prognostic 
value compared with conventional imaging metrics. Moreover, combining imaging 
and histologic information yielded further improvement in the accuracy of predic-
tion for distant metastasis.

In addition to NSCLC, the potential of radiomics has been extensively investi-
gated in head and neck cancer. El Naqa and colleagues studied FDG-PET/CT 
radiomics and combined them with clinical information to assess the risks of locore-
gional recurrence and distant metastasis in head and neck cancer patients [40]. The 
prognostic value of constructed prediction models was confirmed in an external 
cohort. In another recent study, Wu et al. analyzed quantitative image features of the 
primary tumor and involved lymph nodes defined at the baseline and midtreatment 
imaging characteristics of oropharyngeal cancer (OPC). They developed a machine 
learning model based on random survival forest and found that nodal imaging fea-
tures were the most important features for predicting distant metastasis. The model 
provided independent prognostic information beyond established clinical factors 
including stage, smoking history, and HPV status. It further stratified patients within 
the subgroup of patients with HPV-positive OPC [41]. This study highlights the 
need to evaluate nodal imaging characteristics beyond primary tumor. The machine 
learning model has the potential to identify HPV-positive OPC patients who have a 
higher risk of distant relapse and should not be considered for treatment 
deintensification.

The majority of radiomic studies are focused on the analysis of the primary 
tumor as a whole. This bulk analysis approach implicitly assumes that the tumor is 
heterogeneous but well mixed, and the regional variations within a tumor are 
neglected. To address this issue, the concept of habitat imaging was proposed to 
capture spatial heterogeneity more explicitly at a regional level [8, 42]. Cao and 
colleagues proposed a clustering-based algorithm to identify the significant subvol-
umes for primary tumors from dynamic contrast-enhanced (DCE) MRI, which can 
predict local or regional failure in head and neck cancer [43]. Wu et al. developed a 
robust tumor partitioning method by a two-stage clustering procedure and identified 
three spatially distinct and phenotypically consistent subregions in lung tumors. 
One subregion associated with the most metabolically active, metabolically hetero-
geneous, and solid component of the tumor was defined as the “high-risk” subre-
gion. The volume of high-risk intratumoral subregion predicted distant metastasis in 
patients with locally advanced NSCLC treated with radiation therapy [44].
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The intratumor partitioning approach can be extended by combining with 
radiomic or texture analysis to allow more detailed and refined image phenotyping. 
Wu et al. [45] showed that the early change of texture features for the intratumoral 
subregion associated with fast contrast-agent washout at DCE MRI predicted patho-
logical complete response to neoadjuvant chemotherapy in breast cancer. Cui et al. 
[46] performed radiomic analysis on tumor subregions and defined 120 multire-
gional image features on MRI in glioblastoma. A 5-feature radiomic signature was 
identified and independently validated in an external cohort to predict overall sur-
vival, which outperformed whole-tumor measurements. Stoyanova and colleagues 
investigated the association of MRI radiomic features with prostate cancer gene 
expression profiles from MRI-guided biopsy tissues [47].

These studies highlight the need for tumor partitioning to identify aggressive 
intratumoral subregions, which is applicable to many types of solid tumors. This 
may have significant implications for clinical oncology by identifying important 
tumor regions for biopsy. In addition, this is particularly relevant for radiotherapy 
treatment planning and adaptation, because high-risk subregions associated with the 
aggressive disease can then be targeted with a radiation boost to potentially improve 
local tumor control.

16.4  Emerging Paradigms: Deep Learning

The radiomics approach described above requires domain expertise to manually 
construct handcrafted images. Automated feature extraction using advanced deep 
learning is being increasingly used for radiomics. Deep learning as detailed in Chap. 
4, is a machine learning technique that uses multiple processing layers and connec-
tions to learn complex relations between input data and desired output from a large 
set of labeled examples. Different from traditional machine learning techniques that 
require domain expertise to design features, deep learning directly deals with raw 
data and automatically develops its own representations needed for pattern recogni-
tion, thus eliminating the need to specify rules or features explicitly [48].

Recently, deep learning techniques have achieved promising and sometimes 
human expert-level performance in a variety of medical image interpretation tasks, 
such as detecting diabetic retinopathy in fundus photographs, classifying skin can-
cer in skin photographs, and detecting breast cancer lymph node metastasis in path-
ological images [49–53]. So far, the vast majority of deep learning applications have 
focused on disease detection and classification in a diagnostic setting [54, 55]. 
Several proof of concept studies suggest that deep learning could also be used to 
extract information from medical images for predicting survival outcomes [56–59]. 
At present, there are relatively few large cohort studies with independent validation 
of deep learning-based imaging signatures, although this likely will change soon.

In a recent study, Jiang et  al. developed and independently validated a deep 
learning- based CT imaging signature to predict survival outcomes in a multicenter 
cohort study of over 1700 patients with gastric cancer [60]. They proposed a novel 
end-to-end deep neural network to predict a patient’s risk of death based on CT 
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image, which was named “S-net” according to the shape of its architecture. Different 
from traditional deep CNN, S-net incorporates the concept of multi-level feature 
stream fusion. The rationale for this design is that both low-level features (e.g., local 
edges and textures) at shallow layers and high-level features (e.g., gross disease 
appearances) at deep layers contain useful information for survival analysis. This 
will allow the extraction and integration of comprehensive multi-scale image fea-
tures for complex tumor phenotypes. The prognostic value of deep learning signa-
ture was independent of traditional clinicopathologic risk factors including TNM 
stage. By combining clinicopathologic and imaging predictors, they showed that an 
integrated nomogram had a much improved prognostic accuracy than did either 
alone. Importantly, the proposed imaging signature predicted benefit from adjuvant 
chemotherapy and could potentially guide personalized therapy in gastric cancer.

In another recent study, Abazeed and colleagues applied deep learning to analyze 
pre-treatment CT scans in a retrospective cohort study of 944 lung cancer patients 
treated with stereotactic body radiation therapy [61]. The single-institutional cohort 
was split into 849 patients in the training cohort and 95 patients in the independent 
validation cohort. The study integrated traditional radiomics features through mul-
titask learning, by applying a time-based survival analysis, and incorporating new 
deep learning methods. They input pre-treatment CT images into a multi-task deep 
neural network and combined these data with clinical variables to derive iGray, an 
individualized radiation dose that estimates the probability of treatment failure. 
Models that included deep learning model and clinical variables predicted treatment 
failures with a significant improvement in accuracy compared with traditional 
radiomics or clinical variables alone. This model could help identify tumors that are 
most resistant to radiation and may lead to personalized dosing of radiation therapy.

16.5  Radiogenomics: Integrating Imaging with Genomics

Radiogenomics builds upon radiomics, which integrates imaging and genomic data 
with the goal of gaining biological interpretation or improving patient stratification 
for precision medicine [10–15, 62–66]. Depending on the goal and study design, 
there are several major approaches for radiogenomic integration, which are depicted 
in Fig. 16.2.

The most commonly adopted radiogenomic study design is to find imaging cor-
relates or surrogate of a specific genotype or molecular phenotype of the tumor. For 
instance, CT semantic and radiomic image features were found to be associated 
with EGFR or KRAS mutations in lung cancer [67–72]. MRI radiomic features were 
also correlated with intrinsic molecular subtypes or existing genomic assays in 
breast cancer [73–75]. Several studies have investigated the association between 
imaging features and tumor-infiltrating lymphocytes (TILs) [76–79]. For instance, 
Ferté et al. correlated both intra and peritumor radiomics features with the expres-
sion of CD8 in tumor core, and they showed the imaging signature may be useful in 
estimating CD8 cell count and predicting clinical outcomes of patients treated with 
immunotherapy [77].
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Radiogenomics can also be used create association maps between molecular fea-
tures and a specific imaging phenotype to reveal its biological underpinnings. For 
example, tumors with higher maximum standardized uptake value from FDG-PET 
were demonstrated to be associated with the epithelial-mesenchymal transition in 
non–small cell lung cancer [80]. In another recent radiogenomic study, heterogeneous 
enhancing patterns of tumor-adjacent parenchyma from perfusion MRI were associ-
ated with the tumor necrosis signaling pathway and poor survival in breast cancer [15].

Beside radiogenomic association, one interesting area of investigation is to use 
unsupervised learning such as clustering algorithms to classify tumors into subtypes 
based on imaging phenotypes rather than molecular features. Itakura et al. identified 
novel glioblastoma subtypes based on MRI phenotypes that are associated with 
distinct molecular pathway activities [13]. Wu et al. [14] discovered and indepen-
dently validated three breast cancer imaging subtypes, which were characterized by 
homogeneous intratumoral enhancement, minimal parenchymal enhancement, and 
prominent parenchymal enhancement. They were shown to be complementary to 
known intrinsic molecular subtypes. In a multi-cohort study of over 1000 patients, 
each of the 3 imaging subtypes was associated with distinct prognoses and dysregu-
lated molecular pathways.

Another direction that is less investigated but particularly relevant for precision 
medicine is to leverage the complementary power of imaging and molecular data 
and integrate them into a unifying model to further improve prediction accuracy of 
clinical outcomes. Along this line, Cottereau et al. [81] showed that combination of 
molecular profile and metabolic tumor volume at FDG-PET imaging improved 
patient stratification for progression-free and overall survival in diffuse large B-cell 
lymphoma. Cui et al. [82] showed that integrating MGMT methylation status and 
volume of the high-risk subregion at multi-parametric MRI improved survival strat-
ification in glioblastoma. Lee et al. developed a CT image-based prognostic signa-
ture and validated it in an external cohort of patients with stage I NSCLC [83]. 
Further, it was shown that a composite imaging and genomic signature improved 

Imaging features
(semantic, radiomic)

Molecular features 
(genomics, transcriptomics)

Design 1. Understand how a 
biological process is reflected 
at imaging; build imaging 
model of molecular features

Design 2. Reveal the 
biological basis of an image 
phenotype.

Fig. 16.2 Typical design of radiogenomic study
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prognostic accuracy upon either one used alone. These studies provide the initial 
evidence that image-based biomarkers can provide additional information beyond 
molecular analysis alone and integrating both will provide more accurate individu-
alized prediction of clinical outcomes.

16.6  Current Challenges and Potential Solutions

Despite the growing interest and promising findings in numerous studies, the prog-
ress for clinical translation of radiomics signatures has been slow. It is important to 
highlight some technical and practical challenges facing the field. These issues 
include standardization of image acquisition protocols and feature extraction, 
robustness and reproducibility of radiomic signatures, data sharing, and validation 
in multicenter cohorts.

16.6.1  Standardization and Quantitative Imaging

Clinical images are typically acquired with the goal of maximizing the contrast 
between normal and diseased tissues. There is often a lack of standardization of 
imaging protocols across institutions with different acquisition and reconstruction 
parameters, which can significantly hamper quantitative radiomic analysis. It is 
essential to standardize or harmonize the imaging data in multicenter validation 
studies. To overcome this issue, there have been several efforts that aim to standard-
ize the imaging protocol by the quantitative imaging biomarkers alliance (QIBA) 
[84] and quantitative imaging network (QIN) [85] among others. In a retrospective 
analysis, several strategies have been proposed to harmonize imaging scans such 
that they are comparable across multiple cohorts. A common strategy is to derive 
the underlying physiological measures from the functional imaging. For instance, 
the perfusion maps can be computed from DCE MRI based on pharmacokinetic 
modeling [86]. Another practical strategy is to gauge the imaging values with the 
value of selected normal tissue region of interest as a baseline. For instance, on an 
individual basis, the average inter-quantile values of the background parenchyma 
can be used to normalize breast MRI scans [14]. In addition, the phantom study can 
be adopted to investigate the inter-scan and inter-vendor variability of the imaging- 
derived features [87, 88], which can provide useful insights into the uncertainties of 
quantitative imaging analysis.

16.6.2  Reproducibility and Need for Prospective Validation

Currently the biggest hurdle toward the clinical translation of radiomics is probably 
the lack of reproducibility. Several pitfalls can be implicated, including poor experi-
mental design, multiple testing leading to false discovery and model overfitting, and 
unadjusted biases or confounding factors among others [89]. To enhance 
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reproducibility, a rational radiomic design should include proper imaging standard-
ization, robustness test of radiomic features regarding segmentation variabilities, as 
well as rigorous model training and testing. Second, each radiomic analysis step 
should be well documented and original codes and data are easily accessible, allow-
ing other investigators to replicate the results. Prior to clinical translation of any 
putative biomarkers, the most critical step is rigorous validation in prospective clini-
cal trials.

16.6.3  Data and Software Sharing

Another challenge facing radiomics is the curation and sharing of image and rele-
vant clinical data in large patient cohorts across multiple centers [85, 90]. It is 
important to match imaging with detailed clinicopathological and treatment infor-
mation, as well as relevant clinical outcomes. There has been some progress toward 
data sharing under the initiative of the cancer imaging archive, where image and 
clinical data for various tumor sites are curated and shared publicly (http://www.
cancerimagingarchive.net/). These cohorts are from single-institution or multicenter 
trails which should greatly facilitate discovery and validation of radiomic models. 
Nonetheless, compared with the abundant public gene expression data, the available 
imaging data are much less and continuing efforts should be spent to curate high- 
quality imaging datasets. Beyond technical challenges, there are also administrative 
and regulatory barriers that need to overcome in order to make large-scale data shar-
ing feasible in the future. Due to the complexity of deep learning models and its 
black box nature, access and sharing of software codes will become essential to 
replicate and validate the models.

16.7  Conclusion and Future Outlook

In conclusion, radiomics and radiogenomics have shown a great promise for the 
discovery of novel imaging biomarkers with potential prognostic and predictive 
value. However, it should be noted that many studies so far are of hypothesis- 
generating nature, and few radiomic signatures have been prospectively validated in 
independent cohorts. Additionally, to be of practical value, any new candidate imag-
ing biomarkers should provide complementary information to known clinical and 
pathologic factors. One critical and yet an under-explored area of investigation is 
how radiomics can be applied to serial imaging scans to better evaluate therapeutic 
response given the increasing availability of treatment regimens. Initial studies 
based on delta-radiomics are encouraging, but the optimum approach to character-
izing longitudinal change remains to be defined.

Moving forward, advanced machine learning techniques, such as deep convolu-
tional neural networks, are expected to play an increasingly important role in defining 
novel image-based prognostic and predictive models. In order for this approach to 
work, a sufficiently large dataset will be required to train a reliable model, 

16 Radiomics and Radiogenomics

http://www.cancerimagingarchive.net/
http://www.cancerimagingarchive.net/


394

highlighting the need for curation of high-quality datasets and data sharing. Regardless 
of radiomics approaches with either handcrafted features or automated deep learning, 
prospective studies in multicenter clinical trials will be required to validate newly 
identified imaging biomarkers and truly establish the value of radiomics and radioge-
nomics in personalized radiation oncology.
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17Modelling of Radiotherapy Response 
(TCP/NTCP)

Sarah Gulliford and Issam El Naqa

17.1  Introduction

Recent years have witnessed tremendous technological advances in radiotherapy 
treatment planning, image guidance, and treatment delivery [1, 2]. Moreover, clini-
cal trials examining treatment intensification in patients with locally advanced can-
cer have shown incremental improvements in local control and overall survival [3]. 
Radiotherapy outcomes are traditionally modelled using information about the dose 
distribution and the fractionation [4, 5] . However, it is well known that radiotherapy 
outcomes are multifactorial and may also be affected by multiple clinical and bio-
logical prognostic factors. For tumours these would include stage, volume, tumour 
hypoxia, etc. [6, 7]. The response of normal tissue incidentally and unavoidably 
irradiated during radiotherapy is the main factor limiting increase in prescription 
dose to the tumour. Optimising this trade-off, known as the therapeutic ratio, is the 
fundamental challenge in radiotherapy (Fig. 17.1).

The accurate prediction of both tumour response and corresponding risk of tox-
icity would provide patients and their treating clinicians with better tools for 
informed decision-making about expected benefits versus anticipated risks and 
higher likelihood of improved outcomes, in which machine learning (ML) methods 
are expected to play a prominent role (Fig. 17.2).

Typically, the 3D dose distribution to each delineated structure is characterised 
using a dose-volume histogram (DVH). A differential dose-volume histogram 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83047-2_17&domain=pdf
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reports the volume (absolute or relative) of a structure, which receives a specific 
dose (Fig. 17.3 top). Modern treatment planning systems usually calculate histo-
grams with a bin width of <=0.1 Gy. More commonly histograms are displayed as 
cumulative dose-volume histograms where for each dose level, the volume of the 
organ or structure receiving at least that dose is reported (Fig. 17.3, bottom). These 
values are commonly reported as Vx where x is the relevant dose, e.g. V60 is the 
volume of a structure receiving at least 60 Gy or Dx where x is typically the relative 
volume, e.g. D90 is the minimum dose to 90% of a structure volume.
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Fig. 17.1 As the dose delivered to a tumour increases, so does the probability of tumour control 
(TCP). However, the resultant increase in dose to surrounding healthy tissues increases the Normal 
tissue complication Probability (NTCP). Balancing TCP against NTCP is known as the Therapeutic 
Ratio and is a major goal for radiotherapy management

Fig. 17.2 An axial slice 
from a radiotherapy 
treatment plan of a patient 
treated for head and neck 
cancer. The Primary PTV 
and nodal volume are 
contoured. The colour 
wash indicates the dose 
distribution

S. Gulliford and I. El Naqa



401

0.0

100

90

80

70

60

50

40

30

20

10

0
0 10 20 30

Absolute Dose [Gy]

R
at

io
 o

f T
ot

al
 S

tr
uc

tu
re

 V
ol

um
e 

[%
]

R
at

io
 o

f T
ot

al
 S

tr
uc

tu
re

 V
ol

um
e 

[%
]

40 50 60

0 10 20 30

Absolute Dose [Gy]

40 50 60

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Fig. 17.3 Examples of differential and cumulative dose-volume histograms (DVH) for a normal 
tissue structure close to the tumour

17 Modelling of Radiotherapy Response (TCP/NTCP)



402

For healthy normal tissues treatment factors will affect the dose distribution 
received but additional factors regarding comorbidities will also be important. Patient 
genetics have also been demonstrated to affect both TCP and NTCP. Recent years 
have witnessed the emergence of data-driven models incorporating advanced bioin-
formatics tools in which dose–volume metrics are mixed with other patient- or dis-
ease-based prognostic factors [8–16] in order to improve outcomes prediction [17] .

17.1.1  General Considerations

The use of machine learning (ML) is often favoured where the underlying relationship 
between the data and the endpoint is unknown and there is a need for future prospec-
tive evaluation of data. This is exactly the case for predicting radiotherapy response. 
Generally, the response of the tumour and organs at risk is related to increasing dose 
but will also depend on a multitude of other patient and treatment factors. For organs 
at risk particularly the dose distribution varies widely and is not well quantified. We 
prospectively evaluate every treatment plan going through the clinic and the develop-
ment of knowledge-based tools to facilitate this process is highly desirable. The abil-
ity of a trained model to generalise to unseen data is imperative. Techniques to ensure 
this include statistical resampling methods such as cross-validation and bootstrap-
ping, which reduce the dependency of a final model on a specific training dataset. The 
use of an independent (relevant) test set, to measure model performance, once the 
model has been finalised should also be regarded as standard practice and is highly 
recommended by the TRIPOD criteria (Transparent reporting of a multivariable pre-
diction model for individual prognosis or diagnosis) [18]. It is important to appreciate 
the extent to which the model can generalise. If a model is trained on data from a 
centre then a well-built model should be able to reflect the toxicity experience of that 
centre. However, it may not be able to predict toxicity for a similar cohort of patients 
from a neighbouring centre where subtle changes in treatment technique, toxicity 
reporting or patient demographic may render the model irrelevant.

Since the intention of radiotherapy is to keep the incidences of toxicity to a mini-
mum the proportion of toxicity/no toxicity in the data set may be very unbalanced 
with only a small number of patients reporting toxicity. Whilst this is generally good 
news for the patient it is a challenge to model building. A number of approaches 
exist to try to account for this. First, the ratio of toxicity/nontoxicity cases should be 
standardised across training groups for example stratified cross-validation and in 
the independent test set. It is also possible to promote the number of cases within the 
dataset for the underrepresented class [19].

17.2  Tumour Control Probability

Tumour control is strictly defined by the probability of the extinction of clonogenic 
tumour cells at the end of treatment [20] . Several radiobiological models have been 
proposed in the literature to model TCP. The linear-quadratic model (LQ) is the 
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most frequently used model for including the effects of repair between treatment 
fractions. The LQ model is based on clonogenic cell survival curves and is param-
eterised by the radiosensitivity ratio (α/β). It is thought that it quantifies the effects 
of both unrepairable damage and repairable damage susceptible to misrepair after 
tumour sterilisation by radiation [21, 22]:

 
SF � � � �� �� � �� �� �exp /� � d D t Tln pot2  (17.1)

where d is the fraction size, D is the total delivered dose, t is the difference between 
the total treatment time (T) and the lag period before accelerated clonogen repopu-
lation begins (TK), and Tpot is the potential doubling time of the cells. The ratio 
ln 2/Tpot is referred to as the repopulation parameter. Several variations of this model 
have been proposed including a Poisson-based [23] and a birth–death model [24]. 
Among the most commonly used LQ-based TCP models [25] is:

 
TCP � � � � �� �� � �� �� �exp( exp ln /N d D t Tpot� � 2  (17.2)

A detailed review of analytical methods for TCP in radiation treatment has been 
recently published [26].

17.3  Machine Learning for TCP Modelling

Machine learning allows for exploiting nonlinear patterns in the data that may not 
be directly tractable from using analytical or phenomenological models. There are 
several steps into development of a TCP model using machine learning as shown in 
the examples below using dosimetric, clinical, imaging, and biological data in 
lung cancer.

17.4  Example 1: Dosimetric and Clinical Variables

17.4.1  Data Set

A set of 56 patients diagnosed with non-small cell lung cancer (NSCLC) and who 
have discrete primary lesions, complete dosimetric archives, and follow-up infor-
mation for the endpoint of local control (22 locally failed cases) is used. The patients 
were treated with three-dimensional conformal radiation therapy (3D-CRT) with a 
median prescription dose of 70 Gy (60–84 Gy). The dose distributions were cor-
rected for heterogeneity using Monte Carlo simulations [27]. The clinical data 
included age, gender, performance status, weight loss, smoking, histology, neoadju-
vant and concurrent chemotherapy, stage, number of fractions, tumour elapsed time, 
tumour volume, and prescription dose. Treatment planning data were de-archived 
and potential dose–volume histogram (DVH) prognostic metrics were extracted 
using CERR [28]. These metrics included Vx (percentage volume receiving at least 
x Gy), where x was varied from 60 to 80 Gy in steps of 5 Gy, mean dose, minimum 
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and maximum doses, and centre of mass location in the craniocaudal (COMSI) and 
lateral (COMLAT) directions. This resulted in a set of 23 candidate variables to 
model TCP.  The modelling process using nonlinear statistical learning starts by 
applying dimensionality reduction technique such as principal component analysis 
(PCA) to visualise the data in two-dimensional space and assess the separability of 
low-risk from high-risk patients. Separable cases could be modelled by linear ker-
nels whilst non-separable cases are modelled by nonlinear kernels that allow for 
separability of the data but at the expense of increased dimensionality. This step 
could be preceded by a variable selection process and the generalisability of the 
model is evaluated using resampling techniques as discussed below [29].

17.4.2  Data Exploration

In Fig. 17.4a, we show a correlation matrix representation of the selected candidate 
variables with clinical TCP and cross-correlations among themselves using 
Spearman’s rank correlation coefficient (rs). Note that many DVH-based dosimetric 
variables are highly cross-correlated, which complicate the analysis of such data. In 
Fig. 17.4b, we summarise the PCA analysis of this data by projecting it into two- 
dimensional space for visualisation purposes. The plots show that two principal 
components are able to explain 70% of the data and reflect a relatively high overlap 
between patients with and without local control, indicating potential benefit from 
using nonlinear kernel methods.

17.4.3  Logistic Regression Modelling Example

The multimetric model building using logistic regression is performed using a two- 
step procedure to estimate model order and parameters. In each step, a sequential 
forward selection strategy is used to build the model by selecting the next candidate 
variable from the available pool (23 variables in our case) based on increased sig-
nificance using Wald’s statistics [30]. In Fig. 17.5a, we show the model order selec-
tion using the leave-one-out cross-validation (LOO-CV) procedure. It is noticed 
that a model order of two parameters provides the best predictive power with 
Spearman rank correction coefficient (rs = 0.4). In Fig. 17.5b, we show the optimal 
model parameters’ selection frequency on bootstrap resampling (280 samples were 
generated in this case). A model consisting of GTV volume (β = −0.029, p = 0.006) 
and GTV V75 (β = +2.24, p = 0.016) had the highest selection frequency (45% of 
the time). The model suggests that increase in tumour volume would lead to failure, 
as one would expect due to increase in the number of clonogens in larger tumour 
volumes. The V75 metric is related to dose coverage of the tumour, where it is 
noticed that patients who had less than 20% of their tumour covered by 75 Gy were 
at higher risk of failure. However, a drawback of this logistic regression approach is 
that it does not automatically account for possible interactions between these met-
rics nor does it account for higher-order nonlinearities.
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Fig. 17.4 (a) Correlation matrix showing the candidate variable correlations with TCP and among 
the other candidate variables. (b) Visualisation of higher dimensional data by principal component 
analysis (PCA). Left The variation explanation versus principal component (PC) index. Right The 
data projection into the first two principal component space. Note the cases overlap
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17.4.4  Kernel-Based Modelling Example

To account for potential nonlinear interactions as revealed by the principal compo-
nent analysis (PCA), we will apply kernel-based methods using support vector 
machines (SVM). Moreover, we will use the same variables selected by the logistic 
regression approach. We have demonstrated recently that such selection is more 
robust than other competitive techniques such as the recursive feature elimination 
(RFE) method used in microarray analysis. In this case, a vector of explored vari-
ables is generated by concatenation. The variables are normalised using the z- scoring 
approach to have a zero mean and unity variance [31]. We experimented with differ-
ent kernel forms; best results are shown for the radial basis function (RBF) in 
Fig. 17.6a. The figure shows that the optimal kernel parameters are obtained with an 
RBF width σ = 2 and regularisation parameter C = 10,000. This resulted in a predic-
tive power on LOO-CV rs = 0.68, which represents 70% improvement over the logis-
tic regression analysis results. This improvement could be further explained by 
examining Fig.  17.6b, which shows how the RBF kernel tessellated the variable 
space nonlinearly into different regions of high and low risks of local failure. Four 
regions are shown in the figure representing high/low risks of local failure with high/
low confidence levels, respectively. Note that cases falling within the classification 
margin have low confidence prediction power and represent intermediate- risk 
patients, i.e. patients with “border-like” characteristics that could belong to either 
risk group [29]. Klement et al. [19] describe using a SVM approach to predict TCP 
for early stage non-small cell lung cancers treated with stereotactic radiotherapy. 
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Fig. 17.6 Kernel-based modelling of TCP in lung cancer using the GTV volume and V75 with 
support vector machine (SVM) and a radial basis function (RBF) kernel. Scatter plot of patient 
data (black dots) being superimposed with failure cases represented with red circles. (a) Kernel 
parameter selection on LOO-CV with peak predictive power attained at σ = 2 and C = 10,000. (b) 
Plot of the kernel-based local failure (1-TCP) nonlinear prediction model with four different risk 

(continued)
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Forty-nine out of three hundred ninety-nine patients had a local failure after 6 months. 
Both under sampling and SMOTE (Synthetic Minority Over-sampling Technique) 
methods were used to account for the imbalance between classes. Only seven fea-
tures were considered since dosimetric variables are known to be highly correlated. 
tenfold CV was employed, and variable selection was assessed using AUC. The final 
model was compared with a multivariate logistic regression and was found to have a 
higher area under the ROC curve AUC of 0.789 vs 0.696.

17.4.5  Comparison with Other Known Models

For comparison purposes with mechanistic TCP models, we chose the Poisson- 
based TCP model and the cell kill equivalent uniform dose (cEUD) model. The 
Poisson-based TCP parameters for NSCLC were selected according to Willner et al. 
work [32], in which the sensitivity to dose per fraction (α/β = 10 Gy), dose for 50% 
control rate (D50 = 74.5 Gy), and the slope of the sigmoid-shaped dose–response at 
D50 (γ50  =  3.4). The resulting correlation of this model was rs  =  0.33. Using 
D50 = 84.5 and γ50 = 1.5 [33, 34] yielded an rs = 0.33 also. For the cEUD model, we 
selected the survival fraction at 2 Gy (SF2 = 0.56) according to Brodin et al. [35]. 
The resulting correlation in this case was rs = 0.17. A summary plot of the different 
methods predictions as a function of binned patients into equal groups is shown in 
Fig. 17.7. It is observed that the best performance was achieved by the nonlinear 
(SVM-RBF). This is particularly observed for predicting patients who are at high 
risk of local failure.
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significant superior performance in predicting high-risk (low-control) patients
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17.5  Use of Imaging Features

Pretreatment or posttreatment information from anatomical or functional/molecular 
imaging could be used to monitor and predict treatment outcomes in radiotherapy. 
For instance, changes in tumour volume on computed tomography (CT) have been 
used to predict radiotherapy response in NSCLC patients [36, 37]. On the other 
hand, functional/molecular imaging, in particular positron emission tomography 
(PET) with fluorodeoxyglucose (FDG), has received special attention as a potential 
prognostic factor for predicting radiotherapy efficacy [38–41]. For instance, high 
FDG-PET intensity has been shown to correlate with poor local control in lung 
cancer [42–45]. In our previous work, new features based on image morphology, 
intensity, and texture/roughness can provide a more complete characterisation of 
uptake heterogeneity [41]. Recently, we have shown that in addition to PET fea-
tures, CT-derived features (from the gross target volume) may also improve predic-
tion of local tumour response as shown in Fig. 17.8 [46].
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17.6  Use of Biological Markers

A biomarker is defined as a characteristic that is objectively measured and evaluated 
as an indicator of normal biological processes, pathological processes, or pharma-
cological responses to a therapeutic intervention [47]. Biomarkers can be imaging 
biomarkers or measurements of gene expression or protein levels from tissue or 
fluid specimens. For instance, blood-based protein expression of hypoxia [48] and 
inflammation [49] were shown to be predictive of tumour response to radiotherapy. 
Therefore, we conducted a comparison study of physical factors, biological factors 
extracted from blood sera, and a combined model of local control in NSCLC 
patients. In order to account for the hierarchal relationship between the different 
variables, we utilised a graphical Bayesian network (BN) framework. A BN is a 
probabilistic graphical model of outcomes in which the variables (dosimetric, clini-
cal, and biological) are presented as nodes in the graph and their conditional depen-
dencies are represented by directed acyclic graph as shown in Fig. 17.9 [50].

A p(B=1) p(B=2) p(B=3)

3 0.2353 0.1363 0.6284
2 0.1602 0.4661 0.3737
1 0.0984 0.8812 0.0204

A p(B=No) p(B=Yes)

3 0.5264 0.4736
2 0.4995 0.5005
1 0.4775 0.5225
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3 0.3663 0.3024 0.3313
2 0.2898 0.3795 0.3307
1 0.3366 0.3497 0.3137

A p(B=1) p(B=2) p(B=3)

3 0.3167 0.3468 0.3365
2 0.3313 0.3140 0.3547
1 0.3611 0.4406 0.1983
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Fig. 17.9 Top Bayesian network with probability tables for combined biomarker proteins and 
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17.7  NTCP Modelling

Although complimentary in approach, the complexity of predicting normal tissue 
response is a higher dimensional problem than predicting local control. The reasons 
for this are: (1) there are usually more than one organ at risk irradiated and protect-
ing all of these structures requires compromise; (2) each structure responds differ-
ently to radiotherapy due to the type of cells and the structural and functional 
organisation of the tissue; and (3) the dose distributions to the surrounding normal 
tissues are inhomogeneous with gradients across the tissues commonly related to 
the proximity to the tumour (Fig. 17.2). This variability results in a large number of 
potential dose distributions to the structure. Consequently, the dose-volume rela-
tionship to toxicity is complex and not well understood.

Describing the dose distributions in order to model the response of the structure 
has been explored widely. The QUANTEC report published as a supplement in 
International Journal of Radiation Oncology Biology and Physics [51] provided a 
comprehensive report summarising the published data on the dose-volume response 
for 16 organs at risk whilst considering the limitations of the data and providing 
recommendations on how to improve future data collection and analysis. Commonly 
the dose measure is quantified as a metric such as maximum or mean dose or vol-
ume of the structure receiving a specified dose (Vx). Once developed and validated 
these metrics can be used prospectively as constraints during the treatment planning 
process. Each treatment plan is assessed prior to treatment in order to ensure safety 
and to evaluate the likely therapeutic success and risk of complication. In order to 
assess this risk, the concept of the NTCP has been developed. It is the probability 
that a given dose distribution to a defined tissue or structure will result in a quantifi-
able (unfavourable) response in the patient. The dose response of tumours to radia-
tion is characterised using a sigmoidal response and this shape of response is 
translated as the basis for NTCP models. However, whereas in the case of a tumour 
where the dose is (ideally) homogenous, in the case of a normal tissue the dose 
distribution is ideally inhomogeneous with as much tissue as possible being spared. 
The result of this is the challenge of which metric to plot on the abscissa.

17.7.1  NTCP Models

A range of NTCP models have been developed, the most widely known and perhaps 
most regularly used is the Lyman Kutcher Burman (LKB) model. This model com-
prises an empirical model of dose response as a function of irradiated volume [52], 
the reduction of a dose-volume histogram to a single metric [53] and parameter fits 
for individual organs at risk [54] based on the tolerance doses summarising clinical 
knowledge by Emami et al. [55]. Originally the Lyman model was developed for 
particle therapy where dose distributions fall off steeply and essentially result in 
uniform dose D to a percentage of the organ with little dose to the remainder. The 
tolerance dose parameter TD50(1) or TD5(1) is the 50% or 5% probability of 
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experiencing toxicity where the whole structure is irradiated. The power law is 
employed to account for fractional irradiation.
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TD50(V) is the tolerance dose for a partial volume V. The parameter m is the stan-
dard deviation of TD50(1) and n indicates the volume effect of the organ being 
assessed. n = 0 indicates a completely “serial” structure, where the maximum dose 
dominates outcome and n = 1 is a “parallel” structure where the mean dose is related 
to outcome.

17.7.2  Dosimetric Data Reduction-Summary Measure

In reality the dose distribution to an organ at risk is likely to be inhomogeneous. In 
this case a reduction is required to translate the inhomogeneous dose distribution to 
a single metric that results in the same radiation response as a corresponding homog-
enous dose distribution. The most commonly used metric is the generalised equiva-
lent uniform dose [56]. Originally developed as the equivalent uniform dose to 
tumours [57] the concept was extended to include normal tissues. The formula is 
usually written as
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where Di is the dose in the ith bin of the DVH and Vi is the volume of tissue receiving 
dose Di, a is the volume parameter and is equivalent to 1/n.

Alternative models which consider the functional architecture of the organ/struc-
ture have also been employed [58, 59].

17.8  Machine Learning Approaches to NTCP Modelling

Machine learning brings a new toolbox to the challenges of predicting NTCP. The 
concept of allowing a nonlinear model to develop without an “a-priori” definition of 
the relationship between input variables and outcomes removes bias from our lim-
ited understanding of the response of normal tissues to radiation and enables us to 
uncover new information. Many of the considerations for predicting NTCP using 
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machine leaning are common to the different “flavours” of machine learning. As 
discussed, the data available includes dosimetric data, patient characteristics, previ-
ous health history, other current health conditions (comorbidities), systemic therapy 
(chemotherapy) and surgery. Little is known about the interaction between these 
different types of information and therefore the flexibility of being able to include 
variables without understanding higher-order interaction terms is a genuine advan-
tage of machine learning. Many of the publications to date that predict NTCP from 
dosimetric variables present the data in the form Volume receiving (x) Gy or a 
reduction of the dose-volume histogram to EUD. The bins of the histograms for an 
individual patient are known to be highly correlated. Depending on the uniformity 
of the radiotherapy protocol for the cohort under observation, there is usually an 
inter-patient correlation to consider. Machine learning approaches are generally 
well placed to cope with such interactions.

17.8.1  Multivariable Logistic Regression

Conventionally models are obtained by fitting a sigmoidal shaped curve to a mea-
sure of dose to predict toxicity. This is achieved using data from retrospective 
cohorts of patients. Commonly, multivariate logistic regression [60] is performed 
where the model to predict probability of toxicity is comprised of coefficients 
describing the contribution of individual explanatory variables to the final model 
[61]. The outcome predicted by the model is compared to the known outcome and 
the error is minimised to find the optimal parameter fit. Statistical techniques of 
cross-validation and bootstrapping are employed to ensure generalisability of 
the models.

Logistic Regression assumes that the variables in the model are independent and 
uncorrelated. Since DVH data is neither of these, careful consideration is required 
on the use of logistic regression. As a result, dosimetric information is often limited 
to a single summary metric such as mean dose resulting in a compromise on the data 
included in the model. Dean et al. [62] described using penalised logistic regression 
to overcome the issues of correlated variables to predict acute dysphagia for 173 
patients treated with radiotherapy for head and neck cancer. Fractional dose-volume 
histogram data for the pharyngeal mucosa was described in 20 cGy bins and aug-
mented with clinical information such as chemotherapy and patient characteristics. 
Additionally, spatial descriptors of the dose distribution were also described using 
3D moments and trained independently. Support vector machines (SVM) and ran-
dom forests (RF) were also trained on both conventional and spatial dosimetric data. 
Model performance was addressed using AUC, Log loss and Brier Score. An inde-
pendent dataset of 90 patients from University of Washington was available as an 
independent validation set. Overall the penalised logistic regression model using 
standard DVH metrics was not outperformed by any other model with an AUC of 
0.76 on the internal validation and 0.82 on the external validation. Calibration 
curves were fitted to the models to present the predicted outcome compared to the 
known outcome. Curves can be recalibrated to improve the model fit further.
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17.8.2  Feature Selection

Feature/variable selection can be regarded either as a pre-processing step or an inte-
gral part of model fitting. Where the existence or strength of correlation between 
individual features and toxicity is unknown a wide range of possibilities will need 
to be included in the original input data. It is important to also consider interactions 
between variables that may contribute to the predictive power of the model.

Advantages of pre-processing feature selection include reduction of model com-
plexity, decrease in computational burden and improve generalisability of unseen 
data [63].

A wide range of methods for variable selection are available and a useful sum-
mary on this is found in [64]. Within the literature for predicting NTCP using 
machine learning undoubtedly one of the most popular is principal component anal-
ysis (PCA). Principal components are uncorrelated linear combinations of variables 
in a given dataset, which account for the variance in the input features in a dataset 
without reference to the corresponding outcome data, i.e. unsupervised learning. 
Ideally data with the same outcome class naturally cluster together and the clusters 
are separable from each other. PCA is particularly attractive feature for DVH-based 
analysis where variables are known to be highly correlated and has been coupled 
with conventional statistical models such as logistic regression as well as machine 
learning methodologies.

The reduction of dimensionality results in the ability to visualise high order data. 
One of the earliest studies using PCA to predict NTCP was published by Dawson 
et al. [65] who considered PCA for two different organs at risk. PCA was chosen in 
order to consider all the bins of a DVH without having to reduce to a single metric, 
such as mean dose, or summary metric such as EUD. The first cohort included 56 
head and neck patients where data from the parotid glands was used to predict xero-
stomia (dryness of the mouth) 12 months after radiotherapy. The dosimetric data 
was characterised as a cumulative DVH with 1 Gy bins (84 bins in total). The first 
two principle components explained 94% of the variance in the DVH. When these 
were plotted against each other (Fig. 17.10) and labelled according to outcome class 
there was clear separation between the classes indicating that outcome classes were 
potentially linearly separable Logistic regression was applied to the first 3 principal 
components in addition to patient sex, age and diagnosis. Only the first principal 
component was significantly associated with toxicity.

In contrast to these clear-cut results the other cohort studied was 203 patients 
who received radiotherapy to either partial or whole liver. The first two principal 
components were plotted along with the Lyman NTCP model however no separa-
tion between clusters was observed. Despite this result the results of logistic regres-
sion including the first three principal components and relevant clinical factors 
demonstrated that only the first principal component was significantly associated 
with toxicity.

Following on from the work by Dawson, Bauer et al. [66] explored the use of 
PCA to quantify rectal bleeding in a cohort of prostate cancer patients treated with 
radiotherapy. The authors propose the use of a varimax rotation, an orthogonal 
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rotation applied to the subset of principal components that account for most of the 
variance in the data set. The varimax rotation maximises sparseness of the subset 
and only small regions of each mode (component) remain large allowing identifica-
tion of specific regions of the DVH. However, the process re-introduces correlation 
which must be accounted for. A number of subsequent studies detailed the use of 
PCA to predict toxicity following prostate radiotherapy [67–69]. Sohn et al. [67] 
applied PCA to a cohort of 262 prostate cancer patients of which 50 patients reported 
late rectal bleeding CTCAE v. 3 ≥ G2. As with the previous study the bins of the 
cumulative DVH provided the input features however in this case the bin width was 
0.1 Gy resulting in 850 variables. 96.1% of the variation was accounted for by the 
first three principal components.

A novel publication on the use of PCA in radiotherapy incorporates spatial infor-
mation into the relationship between dosimetry and toxicity. Liang et al. [70] used 
(PCA) to identify patterns of irradiation of bone marrow in the pelvic region which 
were likely to increase acute haematological toxicity. White blood cell count nadir 
was used as an indicator for acute haematological toxicity in a cohort of 37 patients 
treated with chemo-radiotherapy for cervical cancer. The dose distribution for each 
patient was standardised by mapping each treatment planning CT, via deformable 
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registration, on to a pelvic bone template. The corresponding dose distributions 
were interpolated and mapped on to the template. The dose to each voxel in the 
standard image was calculated and considered as a predictor variable. The template 
ensured the same number of voxels for each patient and these voxels were sampled 
systematically, left-right, anterior-posterior and superior-inferior to form a row vec-
tor for each patient containing 44,146 elements. For each patient the same element 
referred to the same voxel. Clearly this data set would benefit from dimensionality 
reduction. As with some of the previous studies, since all of the variables were mea-
sured using the same scale (Gy), PCA was performed with the covariance matrix. 
Of the 36 non-zero eigenvalues with corresponding eigenvectors, 5 were statisti-
cally correlated with acute hematologic toxicity using univariate logistic regression. 
The results of the regression were used to test if the resultant dose space was related 
to toxicity. Acute haematological toxicity was defined by dichotomising the white 
blood cell nadir as <2000/μml for no toxicity (n = 23) vs. ≥2000/μml for toxicity 
(n = 14). Difference maps of the dose distribution were projected on to the pelvic 
bone template for those with/without the defined toxicity and compared with the 
voxels, which were shown to be statistically significant in the regression model. 
There was good agreement between the two assessments (Fig. 17.11). This mapping 
approach allowed the visualisation of important anatomical regions of active bone 
marrow which could be avoided using Intensity Modulated Radiotherapy (IMRT).

17.9  Classical Machine Learning Approaches

There are many flavours of machine learning as described in Chap. 3, however, most 
of the literature related to predicting NTCP is from the more established techniques. 
These can be mostly broadly separated in to supervised and unsupervised learning 
approaches. Conventionally, a model relates a number of variables to an outcome or 
classification, this is supervised learning. In contrast unsupervised learning finds 
patterns and groupings among the input variables only, these groupings should then 
naturally reflect the classification of the data. The following sections consider the 
use of supervised and unsupervised learning techniques for prediction of NTCP.

17.9.1  Artificial Neural Networks

Artificial Neural Networks (ANNs) are one of the classic machine learning 
approaches dating back to the seminal work of McCulloch & Pitts [71]. With the 
analogy of the way in which the human brain works it is tempting to think that the 
knowledge of an experienced clinician or medical physicist can be easily trans-
ferred. It has been a popular choice for applications relating to predicting the 
response of normal tissues to radiotherapy. One of the earliest papers was published 
by Munley et al. [72] who trained a feed forward, back-propagation, neural network 
to predict symptomatic lung injury following radiotherapy. Ninety-seven patients 
were included in the neural network of which 25 had a clinician assessed 
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symptomatic lung injury. Patients from a number of tumour sites were included. 
Although 2/3 of patients were treated for lung tumours, the inclusion of other 
tumour sites increased the diversity of the dose distributions and confounding fac-
tors in the training cohort. The neural network had 29 inputs corresponding to pre-
treatment features Dosimetry which included dose-volume histogram reduction 
using both the Lyman [73] and Kutcher method [53], Volume of lung receiving 
10 Gy (V10), V20, V30, V40, V50, V60, V70 and V80 and the full and effective 
dose to lungs and the lung volume. Each input was scaled 0–1. The architecture 
included 2–5 hidden nodes and a single output node each with a sigmoidal activa-
tion function. Training was performed using the leave-one-out approach where each 
patient case was taken out in turn and the neural network retrained. Training was 
terminated when the ROC analysis was maximised. The final result was an AUC of 
0.833 ±0.04. This result was compared with Multivariate Logistic Regression which 
resulted in an AUC of 0.813 ± 0.064 and the dose-volume- histogram reduction 
method of Kutcher which yielded an AUC 0.521 ±0.08. The influence of each input 
variable was assessed by retraining the neural network with the leave-one-out 
approach applied to each variable and ranked by assessing the deterioration in AUC 
after a fixed number of iterations. The use of a leave-one-case-out approach to train-
ing the neural network is likely to result in overfitting but using a leave-one-input- 
out approach to investigate the contribution of individual features allowed useful 
insight into the prediction of toxicity.

In 2007, Chen et  al. [74] reported results for a larger cohort of lung cancer 
patients from the same institution, Duke University Medical Centre, North Carolina. 
Radiation-induced pneumonitis (≥ Grade 2) was reported in 34 out of 235 patients, 
all of whom were treated using 3D conformal radiotherapy. ANNs were constructed 
using an algorithm that successively pruned and grew the input features and hidden 
nodes, using a training-validation cohort to assess improvement (or otherwise) of 
each successive iteration. To avoid local minima, weights and bias were trained 
from 5 randomised initial sets and the lowest error used overall. Weights were con-
strained to ensure reasonable responses between input variables and outcome. For 

Fig. 17.11 Taken from Liang et al. [70] The top row indicates areas of pelvic bone marrow cor-
related to acute hematologic toxicity dichotomised as white blood cell nadir < or > /2000μml. The 
bottom row represents the regression coefficients produced after PCA
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example, weights connecting dosimetric variables were constrained to have a posi-
tive value only. The authors acknowledged that this approach prohibits a compli-
mentary subtractive effect between variables but suggest that this will safeguard 
against detrimental overfitting 93 potential input variables were available. 
Dosimetric information included V6 to V60 in 2 Gy increments and gEUD with a 
varying from 0.4 to 4  in increments of 0.1. The mean dose to the heart was also 
included. Since many of the dosimetric variables are highly correlated the training 
rules ensured that once a variable had been incorporated into the model no other 
highly correlated variables (>0.95) were eligible for inclusion in the model. The 
inclusion of non-dosimetric variables was justified by citing previous analysis of 
Normal Tissue response which was shown to be modified by interaction with che-
motherapy [75] and age [76]. A wide range of non-dosimetric variables, similar to 
the previous publications were included covering patient demographics, treatment 
information and pre-radiotherapy assessment of lung function. A ten-fold cross- 
validation approach was used to ensure that the results were generalisable. Whilst a 
second approach using all patient data for training was developed for prospective 
testing. Leave-one-out analysis was used on this second architecture to assess the 
influence of individual chosen variables. Comparison of models was performed 
using ROC analysis. For the ANN trained using cross-validation the optimised 
architecture containing only dosimetric variables resulted in an ROC of 0.67 for the 
independent test. When non-dosimetric variables were added to the model construc-
tion this improved to 0.76. Each of the ANN developed using cross-validation con-
tained different variables however the authors highlight that often highly correlated 
variables were represented in each model. The model trained for prospective testing 
included 6 variables, V16, gEUD a = 3.5, gEUD a = 1, forced expiration volume in 
1 second (FEV1,) Carbon monoxide diffusion capacity in lung (DLCO%) (both of 
which were assessed prior to radiotherapy) and induction chemotherapy. All input 
features except FEV1 and induction chemo were shown to be individually statisti-
cally significant. It is clear from these results that different parts of the dose distribu-
tion were included in the final model despite dosimetric correlation being 
constrained. This result suggests that different parts of the dose distribution are 
important in predicting toxicity. We will consider this again with later 
publications.

To date we have considered neural networks where features from the dose distri-
bution have been based on the cumulative dose distribution. The disadvantage of 
using dose-volume histograms is that all spatial information is discarded. It is 
known that each organ at risk has internal structure and function and that this is 
important for both damage and repair. There are a number of ways to incorporate 
spatial information into prediction of normal tissue toxicity. One example is the 
paper by Büttner et al. [77] where a dose surface map of the rectum was used as to 
provide the input features to an ensemble of neural networks which predicted rectal 
bleeding following prostate radiotherapy. A dose surface map is generated by 
unfolding the cylindrical structure of the rectum outlined in the treatment planning 
system. A number of unfolding methodologies have been suggested. In this study a 
slice wise method was chosen whereby the rectal contour outlined on each slice of 
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the treatment planning CT was virtually unfolded by cutting at the most posterior 
point. The maps were normalised on a slice-by-slice basis to produce maps as shown 
in Fig. 17.12. Since the dose in adjacent pixels is correlated four locally connected 
neural network architectures were constructed. The first connected a row of 3 neigh-
bouring pixels to each node in the hidden layer with an overlap of 1 pixel. The 
second connected a 3x3 group of pixels to the first hidden layer where a group of 
4x4 nodes was connected to a second hidden layer. In the third architecture a group 
of 3x3 pixels were connected to the first hidden layer. These nodes were connected 
to the second hidden layer row by row with no overlap. Finally, in the fourth archi-
tecture the input nodes were connected in the same way as the second architecture 
i.e. 3x3 group of pixels linked to the hidden nodes. The weights between each group 
were shared making the presumption that a global dose response could be modelled. 
In comparison a fully connected ANN using the dose surface histogram values, i.e. 
the area of the DSM receiving x Gy was constructed with 35 inputs characterising 
the dose between 5 and 73Gy.

An ensemble approach [78] was employed to train the ANN based classifier. An 
ensemble is a group of independently trained ANN each of which contributes to the 
output prediction. Ensembles should be less susceptible to overfitting and “choosing 
an unrepresentative” local minima. In this study an ensemble of 250 ANNs were 
constructed. Each ANN was trained using a different sample of cases from the train-
ing data with independent initialisation of the weights in each ANN. Since the inci-
dence of rectal bleeding was relatively low (53/329 patients) 20% of the patients 
who did not report rectal bleeding and 75% of the patients who did report rectal 

Fig. 17.12 Example dose distribution to the rectum shown as a mesh based on the contours delin-
eated on the treatment planning CT and as a slicewise-unfolded, normalised Dose Surface 
Map (DSM)
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bleeding were randomly chosen for each ANN. Expert ensembles were developed 
by sequentially adding ANN and evaluated using the area under the ROC curve for 
predictions on a subset of patients from the training set. If the AUC improved when 
predictions from the newest ANN were added, then the ANN was added to the 
ensemble. This process was repeated 3 times and ANN that were included in all 3 
ensembles were incorporated into the expert ensemble. This whole process was 
repeated for each fold of the ten-fold cross-validation.

Architecture 2 was shown to produce the best predictive results with an AUC of 
0.61 for all ANN and 0.64 for the expert ensemble this was compared to AUC of 
0.59 for the dose surface histogram-based ANN. In order to assess the influence of 
the data partition resulting from cross-validation the cross-validation partitioning 
was repeated 100 times and the most promising locally connected architecture (2) 
retrained. The mean AUC was 0.65 ± 0.017.

Compared to other studies the AUC is relatively low. However, the improvement 
in the AUC when spatial information was incorporated suggests that using spatial 
information improves the input information and that overall shortcomings may well 
be due to a lack of non-dosimetric data or the fact that the radiotherapy dose distri-
bution (either DVH or DSM) from the treatment planning scan is not representative 
of the actual dose distribution received by the patient over the course of the fraction-
ated treatment.

17.9.2  Support Vector Machines (SVM)

Support Vector Machines are a class of machine learning that attempt to find a 
boundary plane that separates two classification outcomes in feature space. When 
the cases are linearly separable this is relatively straightforward, however, more 
often than not when considering prediction of normal tissue toxicity, the cases are 
not linearly separable. In this situation the variables can be transformed into a higher 
dimensional feature space where the cases may be separated by a hyper-plane. This 
is achieved using a nonlinear kernel such as a polynomial or radial basis function. 
Each data point represents a vector of the variables included in the model. The dual 
optimisation of separating the cases whilst improving fitting accuracy results in a 
balanced trade-off. This is computationally intensive to solve however it is possible 
to characterise the prediction function using only a subset of training data. The cases 
used to define the boundary between classes are known as support vectors. Unlike 
other approaches to machine learning SVM maximise the distance between the two 
classes rather than minimising the mean- square error and it is permissible for a 
defined number of cases to be on the “wrong side” of the boundary. The framework 
of a SVM implicitly includes higher-order interactions between variables without 
having to pre-define what they are.

In a publication complimentary to their work using neural networks (discussed 
in the previous section), Chen et al. describe using support vector machines to pre-
dict pneumonitis [79] on the same dataset reported for ANN [74]. A radial basis 
kernel function was chosen for the SVM in preference to a sigmoid or polynomial 
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kernel as the increase in free parameters might result in overfitting. SVM were con-
structed using only dosimetric variables and separately with all available variables. 
Parameter values C and σ were pre-determined using a grid search. Variable selec-
tion was performed using a similar approach to the ANN study whereby variables 
were added and substituted iteratively employing ten-fold cross-validation. 
Although each of the 10 results was independent there was a large crossover between 
the input variables selected. This level of consistency between folds is reassuring for 
generalisability. The AUC for the SVM including dosimetric and non-dosimetric 
variables was 0.76. A LOO out approach was employed to investigate the impor-
tance of individual variables in the SVMall model. The AUC was reduced by 0.19 
with the exclusion of EUD and by 0.09 for induction chemotherapy. The importance 
of these two variables was consistent with results from the previous ANN study. 
However, the contribution of other variables demonstrates the risk of overfitting if 
techniques such as cross-validation are not employed.

El Naqa et al. describe the use of nonlinear kernel-based approaches for predict-
ing Normal Tissue Toxicities [63] highlighting the challenges of mixed models built 
from different data types including dosimetric metrics, patient characteristics and 
disease/treatment based prognostic factors. They recommend the use of kernel- 
based methods, specifically support vector machines citing the following advan-
tages over other machine learning approaches. Ability to adapt to artificial 
intelligence, ability to avoid excessive over-fitting, maintain computational effi-
ciency of classical statistical methods and in summary state that SVM overcome the 
stigma of a black box due to rigorous mathematical foundations. Pre-processing of 
the data is achieved using PCA which also allows visualisation of the higher dimen-
sional data. Examples from two clinical datasets were presented. The first was a 
small cohort of 55 head and neck cancer patients where a model is developed to 
predict xerostomia which results from a lack of salivary production following radio-
therapy It was observed that the groups of patients with and without xerostomia 
were reasonably separated and it was subsequently demonstrated that a linear kernel 
produced a model which was not bettered by either Radial Basis function or 
Polynomial Kernel. The authors comment that this is “not the norm in radiotherapy” 
as exemplified by the second dataset presented. Data for 219 patients treated with 
radiotherapy for Non-small cell lung cancer (NSCLC) were used to predict Radiation 
Pneumonitis (RTOG Grade 3). Dosimetric characterisation of the dose to the lung 
was achieved using volume receiving x Gy (Vx). Vx with increments of 10 Gy from 
10 to 80  Gy were included. Using these variables, it was demonstrated that the 
classes could not be separated using PCA. Using SVM it was demonstrated that an 
improvement in model performance was observed with increasing order of polyno-
mial. A separate model was developed which included non-dosimetric variables 
including patient, disease and treatment variables. In addition, the dosimetric 
descriptors were expanded to include Dx (the volume of lung receiving a minimum 
dose x). In total 58 variables were included. The top 30 variables were selected 
using recursive feature elimination SVM. Variable pruning was used to account for 
multi-colinearity of correlated variables. The model resulted in a Matthew’s correla-
tion coefficient (MCC) of 0.22 and contained 6 variables. A further SVM was 
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developed using 3 variables discerned from a previous study using model order 
selection with resampling logistic regression. The resultant SVM with a Radial 
Basis function Kernel had an MCC of 0.34. The improvement in this value is attrib-
uted to the ability of a SVM to account for interactions between model variables.

In a subsequent, more comprehensive publication El Naqa et al. [80] expand on 
the data presented. Often in radiotherapy the incidence of complications can be 
quite low. Conventionally an SVM cost function treats the two potential classes 
equally however to account for the imbalance between classes; different weights 
can be assigned to samples in the two different classes with a higher penalty weight 
assigned to the underrepresented class.

As such the penalty term is expanded to
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In addition to the datasets studied in the previous publication data predicting 
acute esophagitis in a cohort of 166 NSCLC patients was also presented. Finally, 
data from a multi-institutional RTOG study (9311) was used as an independent vali-
dation set to predict radiation Pneumonitis. As previously reported the best model to 
predict xerostomia was a linear classifier which yielded an MCC value of 0.64. The 
model to predict Esophagitis included concurrent chemotherapy and dosimetric 
information in the form Vx. No pre-model variable selection was performed. 
Optimal performance was achieved using a radial basis function with σ = 2 and 
C = 100 and yielded an MCC of 0.43.

The advantages of using an ensemble of Support vector machines is explored by 
Schiller et al. [81]. Using the Radiation Pneumonitis data from WUSTL the differ-
ence in AUC for differing size of Ensembles of SVM were compared using stu-
dents’ t-test. The results indicated that the AUC was statistically significantly 
improved for larger ensembles.

17.9.3  Unsupervised Learning SOM

Self-organising maps are an unsupervised form of artificial neural network. 
Unsupervised learning clusters similar data together based on the input features 
with no reference to corresponding output data. Similar to PCA, self-organising 
maps reduce the dimensionality of data. Proposed by Kohonen [82], self-organising 
maps are regularised grids of neurons which are trained by adapting weights. Each 
neuron contains information on the physical location and the weights which can be 
considered as typical values of the input features for that neuron. Neighbouring 
neurons will be more similar than distant nodes Once trained, subsequent cases are 
mapped on to the SOM by finding the neuron with the most similar weights. The 
weights can be initialised randomly however the process may be speeded up by 
performing PCA and using the first 2 principal components to initialise the weights 
Unlike PCA the use of self-organising maps to predict normal tissue complication 
probability is very sparse. The most prominent example is the study by Chen et al. 
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[83] which is complementary to their studies using ANN and SVM. As with previ-
ous studies, two models were developed SOMdose which included dosimetric vari-
ables, and SOMall which also incorporated the non-dosimetric variables such as 
chemotherapy status, tumour information and baseline lung function. Once the 
weights in an SOM are initialised each case is presented in turn to the map. Two 
parameters which steer the learning of the SOM are neighbourhood distance and 
learning rate. The neighbourhood distance defines the acceptable difference between 
the weights of an input and the weights associated with each neuron in order to 
decide if the patient case belongs to a particular node. In this study similarity was 
assessed using the Euclidean distance. The other parameter is the learning rate 
which in the context of SOM defines how much information from the input vector 
(i.e. how many of the input variables) are used in training. Once a case has been 
assigned to a neuron the associated weights are updated and the process repeated 
iteratively. In this study a ten-fold cross-validation approach was used. A map of 
4x3 neurons was found to be optimal and input variables were included using trial 
and substitution. The resultant AUC was 0.67 for SOMdose and 0.73 for SOMall . The 
difference between the two AUC was shown to be statistically significant (p < 0.05). 
The influence of the cross-validation groups was tested by repeating the splitting of 
the data 200 times and retraining the SOMall model. Remarkably the AUC was 
0.724 (SD = 0.017) suggesting a very consistent outcome. EUD with a = 0.9.1 and 
1.1 chemotherapy, histology and tumour location were commonly selected vari-
ables. As mentioned previously EUD with a = 1 is mean dose which has been previ-
ously considered as being predictive of radiation pneumonitis. When this variable 
was removed from the model the decrease in AUC was shown to be statistically 
significant. The only other variable shown to produce a statistically significant 
decrease on exclusion was chemotherapy. These results are consistent with the two 
other publications by the same group.

17.9.4  Bayesian Networks

Bayesian Networks have become a popular statistical approach to challenging non-
linear problems. Bayesian Networks are presented using directed acyclic graphs 
which summarise the joint probability distribution between a set of variables. The 
network is optimised by finding the conditional probabilities on each node which 
best represents the dataset. Oh et  al. [84] describe using a Bayesian network to 
detect interaction of dose-volume-related parameters to predict radiation pneumoni-
tis. The dataset comprised information on a cohort of 209 patients treated with 
radiotherapy for non-small cell lung cancer. Forty-eight of the patients were subse-
quently diagnosed with radiation pneumonitis. Input features included clinical fea-
tures and dosimetric features characterised as Vx and Dx (minimum dose to the 
hottest x% volume). In all 160 features were available and the first step was to 
reduce the number of variables in the model. Information gain-based approach was 
employed for feature selection. Subsequently, the number of input features was 
reduced to 43. The Bayesian classifier assigns each case to the class with the highest 
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posterior probability, determined by Bayes Theorem. We have discussed previously 
that dose-volume data is highly correlated; however a naïve Bayesian classifier pre-
sumes that all features are mutually independent. Therefore, Oh et al. also imple-
mented a tree augmented naïve Bayes classifier which allows connections between 
features, to overcome this challenge. Given the potential number of networks that 
may exist for a given dataset it is not feasible to find an exact solution and approxi-
mate solutions are usually employed. In this case both hill climbing and the K2 
algorithm with random ordering were implemented with the maximum number of 
parents allowed on each node equal to three. The Bayesian networks were evaluated 
using the BDe score metric [85]. tenfold cross-validation was employed and each 
network assessed after 30 iterations. The performance of each network was assessed 
using Matthew’s correlation coefficient. There was reasonable consistency between 
the different models with MCC between 0.25 and 0.3. Unexpectedly the tree aug-
mented naïve Bayes classifier was reported to be inferior in predictive power to the 
naïve Bayesian classifier. One of the advantages of a Bayesian classifier approach is 
that it is inherently visual and therefore relationship between variables can be 
observed. In this study the dosimetric features relating to the heart and lung were 
shown to be clustered separately. Demonstrating that not only is there a relationship 
between heart and lung but also between the variables for each organ.

17.9.5  Decision Trees

Decision trees are constructed using recursive partitioning analysis which optimises 
successive dichotomisation of input variables resulting in a tree-like structure used 
for classification. Each tree is “grown” by starting at a root and splitting the training 
cases into two, maximally separated, classes. This branching continues until a ter-
minal node (leaf) is reached. Each leaf has an associated probability of being 
assigned to a specific class. In the case of NTCP this is the probability of experienc-
ing a defined toxicity. Once trained, prospective cases can be tested, by following 
the appropriate path along branches eventually ending at a leaf.

Das et al. [86] describe using decision trees to augment prediction of the classic 
Lyman NTCP [52] by producing a combined prediction as shown in Fig. 17.13. 
Using the same dataset as described previously by Chen et al. [74, 79, 83] decision 
tress with potential dosimetric and non-dosimetric factors were built using ten fold 
cross-validation with a balanced representation of cases experiencing radiation 
pneumonitis in each fold. The model was constructed using the AdaBoost algorithm 
which sequentially increases the number of weighted predictive units in the model. 
The first predictive unit contained only the Lyman model, subsequent predictive 
units contained both the Lyman model and a decision tree. The predictive error ε for 
each predictive unit was calculated as the sum of individual patient errors (deviation 
from binary outcome) multiplied by patient weights. The weight for the predictive 
unit and patient weights were updated and propagated to the next iteration. The suc-
cess of the split was assessed using the Gini index split threshold criterion [78] 
which was expressed in this study as:
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Ns p p N p p N pinj s uninj s L inj L uninj L R inj R1 1 12 2 2 2�� � � �� � � �� �, , , , , ��� �2 2puninj R,  (17.8)

where S refers to the node being split, L and R refer to the left and right branches, 
N is the number of cases and p is the proportion of patients. The subscript inj refers 
to patients who reported radiation pneumonitis and uninj refers to patients who did 
not. The variables were ranked best to worst based on the Gini index. Only those 
variables with a Gini index >80% of the maximal Gini reduction were included in 
the model. Only three nodes were allowed on the decision tree in each predictive 
unit to avoid overfitting. Direction rules were implemented for a subset of variables 
to ensure that splits were logical for example as dose variables and disease stage 
were forced in a positive direction, i.e. higher value associated with increased risk 
of injury. AUC was used to assess the predictive accuracy of the model as successive 
predictive units were added. It was demonstrated that there was no further increase 
in AUC after 11 units. This model resulted in an AUC of 0.72 compared to predic-
tions made solely using the Lyman NTCP model which yielded an AUC of 0.63.

A simplified model was constructed (Fig. 17.13) where the Lyman NTCP value 
was combined with the value on the appropriate terminal node to provide an overall 
predictive value. This simplified model was shown to have an AUC of 0.75 and 
included the use of induction chemotherapy, histology (squamous vs. other), gender 
and number of fraction per day. More recently Palma et al. [87] used recursive par-
titioning analysis to predict radiation pneumonitis on a cohort of patients identified 
from an international meta-analysis. Data from 836 patients who underwent concur-
rent chemo-radiation therapy for non-small cell lung cancer (NSCLC) from 12 dif-
ferent institutions in Europe, North America and Asia were collected. Patients were 
randomly assigned to either training or validation groups (2/3 vs. 1/3). Initially uni-
variate logistic regression was used to identify input features that were predictive of 
radiation pneumonitis. These features were independently assessed using multivari-
ate step-wise logistic regression and recursive partitioning analysis. The incidence 
of radiation pneumonitis was reported as 29.8% which was scored using a number 
of different scoring schemes where in each case Grade 2 or greater was counted as 
a radiation pneumonitis event.
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Fig. 17.13 Decision tree 
example taken from [86]
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Chemotherapy regimen, Age > 65 years, V20, and mean lung dose were the vari-
ables used in the recursive partitioning model which defined 3 risk groups. A statis-
tically significant difference between the risk of pneumonitis between the risk 
groups was observed for both the training and validation cohorts. The results of this 
study are strengthened by the inhomogeneity in the dataset although no quantifica-
tion is made of predictive accuracy for comparison with other model-based studies.

Valdes et al. [88] also describe using decision trees to predict radiation pneumo-
nitis. Univariate analysis was performed using the gini index. Multivariate decision 
trees were compared with RUSboost algorithm which is designed to overcome the 
challenges of class imbalance and also a random forest classifier (see below). The 
classification was evaluated using the F1 score.

17.9.6  Random Forests

Although decision trees are generally regarded as being highly interpretable, they 
are not necessarily the highest performing classifiers. This can be improved by cre-
ating an ensemble of decision trees known as a random forest. In this way the voting 
of individual trees is aggregated to make the final prediction. Dean et al. [89], in a 
study complimentary to the one described in the logistic regression section, describe 
the prediction acute mucocitis on a cohort of 183 head and neck cancer patients 
using random forests, support vector machines and logistic regression. Model per-
formance was assessed using AUC and calibration curves. The random forest model 
produced an AUC of 0.71 which was similar to the SVC and penalised logistic 
regression but an improved calibration. Additionally, importance factors, derived 
from the Gini index provide information on the contribution of individual variables 
to the model. In this case the volume of oral cavity receiving intermediate and high 
doses was identified.

17.9.7  Hybrid Models and Comparative Studies

Each of the models here has shown strengths and weaknesses. None has been shown 
to be the perfect predictor. The question is whether an improvement can be made by 
combining predictions from different models to give “the best of both worlds”. A 
useful illustration of this is the paper by Das et al. [90] who suggest that fusion of 
predictions from disparate models obtain a more realistic and robust estimate of the 
ground truth and that, where consensus exists between models this reinforces the 
predictions. The results of four previous studies discussed earlier in this chapter are 
combined to give a consensus prediction of the risk of radiation-induced pneumoni-
tis using predictions from independently trained Decision Trees, Neural Network, 
Support Vector Machines and Self Organising Maps. Each model incorporated dosi-
metric and non-dosimetric features from the same pool of available input variables, 
individual reports [74, 79, 83] demonstrated that no two models chose the same set 
of variables. In this study the prediction of each model was averaged to generate an 
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analogue prediction value. One hundred random divisions of the data into ten-fold 
cross-validation was used to make predictions from each of the model types. These 
outcomes were converted to a binary value of 0 (no toxicity), and 1 (toxicity) prior 
to averaging to account for differences in scaling between the outputs of each type 
of classifier. These results were combined to produce an analogue prediction which 
was averaged over the 4 models. The resultant model was shown to have an AUC 
which converged at 0.79 when 10 randomly selected predictions were chosen for 
each model, this was an improvement on the results of each of the individual classi-
fiers. The spearman correlation between any two of the predictions for each model 
was shown to be high ≥0.9 for all models except SVM whilst correlations between 
models was much lower. This emphasises the benefit of repeated cross-validation 
and the combination of different classifiers. The importance of individual input fea-
tures was tested using reverse rank method whereby the patient predictions were 
ranked highest to lowest risk of pneumonitis based on the consensus prediction. The 
values of one input variable were then reverse so that the value for the top ranked 
patient was substituted with the bottom ranked patient and vice versa. The predic-
tions were recalculated and the ranking recalculated. The spearman correlation 
coefficient was used to compare the pre and post switch rankings (which were resa-
mpled 105 times). A large negative coefficient would indicate a large impact on the 
predictions from the variable in question. As with previous publications highly cor-
related variables (Pearsons coefficient > 0.9) were excluded from being added to a 
model where another correlated feature was already present. Therefore, groups of 
dosimetric variables were grouped together. The largest negative coefficient was 
observed when 2 groups of dosimetric variables and induction chemotherapy were 
reversed. Female gender and squamous cell histology were also shown to be impor-
tant. The dosimetric groups represented I EUD (a 0.5–1.2) & vol > 20—30Gy and 
II EUD (a 1.2–3). Subsequently the consensus variables were fitted to a logistic 
regression probability function. This translation of the consensus of machine learn-
ing into an easily interpretable model enables the transfer of learned knowledge in 
to the clinical context.

Nalbantov et al. [91] combined predictions from ten different models to predict 
radiation-induced acute dysphagia (swallowing difficulties). Each model was 
assigned equal voting rights and tested on a prospective cohort of patients. The 
results were compared to predictions made by physicians. All were given the same 
“input” information which included age, gender, WHO performance status, mean 
and maximum dose to the oesophagus, overall treatment time and concurrent/
sequential chemotherapy. Predictions of acute dysphagia ≥G3 (CTCAE) [92] were 
made using Naïve Bayes, Bagging, Bayesian Networks, Boosting, Penalised 
Logistic Regression, Radial Basis Function network, Random Forest, Linear 
Support Vector Machine and LASSO and for a combined model with equal voting 
rights. The combined model resulted in a higher AUC (0.77) for the independent 
prospective validation cohort than for any of the individual models. The correspond-
ing AUC for the physicians was 0.53.

Other studies have chosen not to create hybrid models but have made a direct 
comparison between Machine Learning approaches. Pella et  al. [93] presented a 
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comparison between models based on ANN and SVM to predict acute toxicity for a 
cohort of 321 patients who received prostate radiotherapy. Both techniques were 
chosen for the flexibility that allows both dosimetric and clinical variables to be 
considered in the same model. The input features were selected by the authors based 
on clinical knowledge and appear to be limited compared to those in other studies 
we have considered. The dose distribution to the rectum was quantified by the dose 
received by 30% and 60% of the rectum (D30 and D60 respectively) and the abso-
lute volume (cc) of rectum on the planning scan. The dose distribution to the bladder 
was described using only the dose received by 50% of the bladder and the absolute 
bladder volume (cc) from the treatment planning scan. Unusually, a single outcome 
of either GI or GU toxicity ≥ grade 2 was used, this choice was justified by the 
perceived low incidence of both GI (37%) and GU (11.5%) toxicity in the cohort. 
The Artificial Neural Network architecture was optimised using a genetic algorithm. 
The optimised ANN was reported to have two hidden layers with 47 neurons in the 
first hidden layer with a sigmoid activation function and 44 neurons also with a 
sigmoid activation function. A linear activation function was used in the output 
layer. The ROC for the optimised ANN was 0.697. In comparison the optimal SVM 
was found to have used a polynomial kernel of the ninth order which resulted in an 
AUC of 0.717. Both of these values related to a subset of 30 patients withheld from 
training. It should be noted that the optimisation of both ANN and SVM chose 
parameters that could lead to overfitting. An ANN with 13 inputs but nearly 100 
hidden nodes is likely to be over-fitted as is an SVM using a ninth order polynomial. 
Since no cross-validation was employed it is impossible to infer how well these 
models would generalise. No statistical comparison was made between the AUC for 
the two techniques this may be again due to the singular nature of the result. Another 
study by Oh et al. [64] directly compares machine learning methods for outcome 
prediction for radiation pneumonitis. Comparison is made between both feature 
selection techniques and classification methods. The feature selection methods were 
SVM-Recursive Feature Elimination, Correlation based feature selection chi-square 
feature selection and information gain. Classifiers included SVM, Decision Tree, 
Random Forest and Naive Bayesian. Matthews’s correlation Coefficient was 
employed to assess performance. Each method was tested on a cohort of 209 patients 
NSCLC patients from Washington University school of Medicine of whom 48 
reported radiation pneumonitis, (which was also reported in the study of Bayesian 
Networks from the same group). Data included clinical variables including demo-
graphics and diseases stage and dosimetric variables quantified as Vx volume 
receiving x Gy and Dx dose received by x% of volume. Some input features were 
ranked highly by more than 1 feature selection approach but generally there was 
significant variability between feature selection methods. The feature selection was 
combined with each of the classification methods were starting with the highest 
rank variable models and subsequently increasing the number of variables. It was 
observed that SVM with a radial basis function or polynomial kernel function con-
sistently resulted in the highest Matthews correlation coefficient values. Whilst cau-
tion is needed when comparing models since results may be data specific it is useful 
to consider the relative success of different approaches. Of note is the variability in 
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the results of the feature selection, It is not stated if any adjustment was made for 
correlated inputs which may have affected the results.

17.10  Deep Learning

Many of the papers described here were published in an era when machine learning 
was not in favour, in recent years this has changed dramatically and machine learn-
ing, particularly deep learning is now ubiquitous with modern life. Deep learning 
neural networks are now a commonly used tool and have their roots in the 
MLP. Chapter 4 describes this method in detail. The paper by Buettner described in 
the ANN section describes a handcrafted approach which is now automated in the 
concept of locally connected MLP. Wang et al. [94] describe using a deep percep-
tron network was also used to predict outcomes for lung cancer patient using varied 
data from a hospital electronic health record (EHR) systems. This ensemble net-
work was trained using an automated approach to tune hyper parameters and a snap-
shot ensembles restarting strategy which takes snapshots of local minima to speed 
up training time for the ensemble. Multi objective optimisation utilising a pareto 
frontier was used for model selection. Twenty variables of different types were 
extracted from the EHR of 1007 patients treated with radiotherapy for lung cancer. 
Interestingly none of the characteristics related to the details of the radiotherapy 
treatment. Outcome at 1 year was predicted and compared to a classic support vec-
tor machine, a deep neural network (DNN) and a multi objective model. The multi-
objective deep learning approach MoeDL was found to have the highest overall 
predictive metrics. This complex architecture was applied to a relatively simple 
dataset, deep learning is often associated with complex data such as images. Liang 
et al. [95] describe using a convolutional neural network approach to relate the 3D 
dose distribution to radiation- induced pneumonitis. The model is compared to 
results from a previous publication on the same dataset using a penalised logistic 
regression model with a more conventional characterisation of inputs of dose/vol-
ume parameters and dosiomics which are described in the next section.

17.11  Radiomics and Dosiomics

Radiomics is the term used to describe quantitative features extracted from a grey 
scale medical image such as CT in order to characterise spatial information, [96, 
97]. These imaging biomarkers can be used for studies exploring classification and 
delineation of tumours and prediction of outcomes [98, 99]. A full exploration is 
beyond the scope of this chapter however the subsequent transfer of the concepts to 
3D dose distributions have resulted in an interest in prediction of radiation response. 
The imaging biomarkers are intensity, texture and morphological descriptions of the 
voxels of the image such as the grey level run length matrix (GLRLM) which 
describes the number of runs of pixels of a particular grey scale value and defined 
length in the 3D image. This is one of the features used by Liang et  al. in their 
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previous publication which uses penalised logistic regression to predict radiation 
pneumonitis. Gabrys et al. [100] have also detailed using Dosiomic features based 
on 3D moments to for multivariable NTCP models to predict xerostomia using a 
multitude of feature selection and classifier combinations. However, the highest 
AUC were obtained from univariate analysis of features related to the dose gradient 
across the parotid gland.

17.12  Radiogenomics

One of the many types of information which may influence the toxicity experi-
enced by patients is the unique genetic code. In recent years there have been a 
number of genome wide association studies (GWAS) which have tried to identify 
genetic markers individual variations known as single nucleotide polymorphisms 
(SNPs) which are likely to indicate a difference in radiation response [101]. Since 
there are millions of potential SNPs in the genome extremely large datasets are 
preferable. However Cui et al. [102] demonstrated that combined careful consid-
eration of feature selection and a-priori knowledge of likely candidates can be 
utilised to make prediction of radiation pneumonitis using a modest-sized datas-
ets. The paper is a comprehensive exploration of feature selection, classical 
machine learning and deep learning approaches. Two hundred thirty features of 
interest were initially selected with a minority relating to dosimetry (5) and clini-
cal factors (13) the remaining factors were measured cytokine levels, SNPs and 
microRNAs. Conventional feature selection approaches were compared with a 
variational autoencoder (VAE) approach which is an unsupervised deep learning 
concept whereby information is reduced and then expanded. The results were 
used as inputs to classic machine learning approaches of MLP, SVM & 
RF.  Additionally, a joint VAE and MLP architecture was employed. Finally, a 
hybrid system which took the feature selection and VAE selection as input to a 
classic classifier was developed. Feature selection was explored with nested cross-
validation and the top p% method which selected features which most frequently 
ranked highly. Overall the highest AUC (0.831) was obtained from the hybrid 
approach of feature selection using both weight pruning and latent variables 
which was then trained with an MLP.  Of the 22 features included in the final 
model 7 were identified in every MLP model and included mean lung dose. This 
is an impressive result since it is known to predict for pneumonitis but was one of 
230 input variables.

This field is advancing rapidly, and undoubtedly further publications will be 
available to explore the topic further [103, 104].

17.13  Challenges Modelling Radiotherapy Response

Despite many studies on large, high quality datasets, predicting NTCP remains a 
challenge. There are many potential reasons for this as discussed in the following.
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 1. In addition to the dosimetric response of normal tissues many other factors con-
tribute to the incidence of toxicity, including patient characteristics, such as 
comorbidities or previous treatments which may modify the dose response and 
other treatments including chemotherapy which have the potential to cause side 
effects but may also affect the dose response of an organ [105].

 2. Preliminary data is emerging to indicate that the response of normal tissues is 
partly determined by genetic susceptibilities. Genome wide association studies 
(GWAS) have so far shown inconsistent results when associations between tox-
icity and single nucleotide polymorphism (SNPs) have been investigated [106].

 3. Currently the 3-D dose distribution to an organ is summarised and/or reduced to 
provide dosimetric information. However, this often results in the loss of spatial 
information. It is known that many organs contain substructure which is inherent 
to organ function. A classic example is the kidney [107] where dose specifically 
to the nephrons is known to be important.

 4. Dosimetric data for an organ at risk relies on the contouring of the structure on 
the treatment planning system. Institutional protocols should be in place to 
ensure consistency of outlining. However, definitions may vary between institu-
tion, this is particularly important when applying a model to data from another 
institution [108].

 5. WYSINWYG. What you see is not what you get. In addition to contouring con-
sistency most NTCP studies use the treatment planning scan to define the organ 
at risk. Great care is taken at each fraction of radiotherapy to ensure that the 
treatment plan is reproduced and that the target is irradiated accordingly. 
However variation in normal tissues is not necessarily accounted for so unless an 
accumulated dose, based on daily imaging is constructed, there may well be a 
difference between the dosimetric data reported from the treatment plan and the 
actual dose to the normal tissue being modelled [109].

Awareness of these challenges and, where possible, incorporating them in to 
TCP/NTCP modelling will improve the robustness and generalisability of the resul-
tant models.

17.14  Summary

This chapter has reviewed many of the studies which have implemented machine 
learning to further the knowledge of TCP and NTCP. Considering the total num-
ber of publications, machine learning has had a limited impact on the field. Here, 
we consider why this is the case and how that might be addressed. Machine learn-
ing, particularly artificial neural networks are traditionally regarded as being mys-
tical black boxes where it is impossible to interpret the underlying model. 
Although it is challenging to interpret the weights of a black box it is not impos-
sible, whilst other machine learning techniques, for example decision trees are 
considerably more transparent. There are a wide variety of machine learning tech-
niques and deciding which one is appropriate can be daunting. The suite of 
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publications from Duke University [74, 79, 83, 90, 110] and comparative papers 
by Oh [111], Pella [93], Dean [62, 89] are insightful. It is not wise to necessarily 
take the AUC measure as the comparative standard between models as this may 
well be data specific. However, it is useful to consider the congruence of features 
selected by the final model. In some cases, combining different models improves 
predictive accuracy particularly where input features are potentially highly cor-
related. In this case an ensemble may facilitate similar information being used in 
slightly different forms. Alternatively, a hybrid approach can result in the best of 
all worlds. The flip side is that these models are inherently complex and may suf-
fer from a lack of generalisability if not carefully trained. In addition, it may be 
more challenging to interpret the role of individual input features when many are 
distributed through the model. Many of the studies presented in this chapter have 
indicated that the results from machine learning were superior to standard tech-
niques. This may be in part due to the flexible approach to combining different 
data types that are available. However only in rare cases does the AUC exceed 0.8. 
Although this is considered to be a very good result for both classic statistical and 
machine learning approaches in the medical arena ideally every patient would 
have a valid prediction. The reasons why we reach this glass ceiling are complex 
but essentially result from a failure to fully reflect the patient experience. No 
model can predict an outcome from data that is not provided as an input. The 
amount of data available for each patient is exploding as genetic information is 
incorporated into studies. In addition, the dose distribution to organs at risk is 
insufficiently characterised by DVH and steps to improve this by including spatial 
information will further increase the number of input features. Machine learning 
is a knowledge transfer tool allowing clinicians to present all of the data that they 
regard as relevant to a specific prediction situation. Clearly medical understanding 
evolves daily and therefore predictive models will need to continuously be updated 
to include this increased knowledge. Machine learning approaches are well 
equipped to deal with big data, and it is hoped that in the future the understanding 
of the response of normal tissues following cancer treatment including radiother-
apy will be well understood and reliable knowledge-based models will be used as 
standard in the clinic.

17.15  Conclusions

Recent evolution in imaging and biotechnology has provided new opportunities 
for reshaping our understanding of radiotherapy response. However, the com-
plexity of radiation-induced effects and the variability of tumour and normal 
tissue responses would render the utilisation of machine learning algorithms as 
indispensable tools for better delineation of these complex interaction 
mechanisms.
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18Smart Adaptive Treatment Strategies

Huan-Hsin Tseng, Randall K. Ten Haken, and Issam El Naqa

18.1  Introduction

Recent years have witnessed tremendous growth in cancer patient-specific informa-
tion from multimodality imaging (Computer tomography (CT), positron emission 
tomography (PET), magnetic resonance imaging (MR), ultrasound (US)) to bio-
technology (genomics, transcriptomics, proteomics, etc.), ushering in a new era of 
Big Data in oncology. With the availability of the patient-specific data, such as clini-
cal, treatment, imaging, molecular markers, before and/or during oncology courses, 
new opportunities are becoming available for personalized oncology and radiother-
apy treatments [1, 2].

The synthesis of this information into actionable knowledge to improve patient 
outcomes is currently a major goal of modern oncology. Subsequently, adapted can-
cer treatments (ACTs) have emerged as an important framework that aims to develop 
personalized treatments by adjusting treatment prescription according to clinical, 
geometrical changes, and physiological parameters observed during an oncology 
treatment course. Our goal in this chapter is to explore in more details the processes 
involved in the ACT framework that would allow aggregating and analyzing rele-
vant patient information in a systematic manner to achieve more accurate decision- 
making and optimize long-term outcomes. We will consider the special case of 
radiotherapy (RT) as an example of such applications.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83047-2_18&domain=pdf
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18.2  Adaptive Treatment in Radiotherapy

The notion of ACT extends the traditional concept of adapted radiotherapy (ART) [3, 
4], which is primarily based on imaging information for guidance, into a more gen-
eral ART framework that can receive and process all relevant patient-specific knowl-
edge that can be useful for adaptive decision-making and personalization of treatment. 
For instance, during a course of RT, anatomical and biological changes occur to the 
tumor and surrounding normal tissue that should be accounted for and the plan for 
treatment adapted to achieve improved outcome. Schwartz et al. demonstrated in a 
prospective trial benefits of such adaptive approach in head and neck cancer [5]. This 
approach has been demonstrated in phase I/II trials in liver [6] and lung [7] cancers. 
However, adaptation in these studies is based on subjective assessment and applica-
tion of short-term heuristics that do not take full advantage of intra-treatment/follow-
up information for deciding the best adaptation action long term, leading to modest 
improvements and yielding in many cases disappointing suboptimal results [8].

The proposed ACT-ART framework can be thought of as being comprised of 
four stages, as depicted in Fig. 18.1. These stages include: (1) planning patients 

c Proposed framework
ACT-ART

b Current framework

a Previous framework

planning patients
using knowledge

planning patients
with imaging only

planning patients
with imaging only

update knowledge

update image

update image

what knowledge?

how to adapt?

individual
response

population
response

population
response

treat patients

treat patients

treat patients

update plan

response
estimate

retain plan

Fig. 18.1 Comparison of workflow of (a) nonadaptive RT, (b) current image-based ART, and (c) 
the proposed ACT-ART approach. The current ART (b) mostly relies on image guidance such as 
computed tomography (CT), positron emission tomography (PET), and magnetic resonance imag-
ing (MRI). In ACT-ART, the planning patients’ stage can utilize general knowledge about patient 
status (imaging + biological markers) as information for adapting treatment instead of using imag-
ing only. Two major differences between previous/current RT and ACT-ART are that (1) knowl-
edge is no longer restricted to imaging only and can include biological markers such as tumor 
genetics or blood-based inflammatory proteins (cytokines) to inform predictive modeling and 
decision-making; and (2) application process of machine learning for adapting a treatment plan π 
in ACT-ART. Adapted from [9]
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using available knowledge, or pre- treatment modeling, (2) updating the prediction 
models with evolving knowledge through the course of therapy, or during-treatment 
modeling, (3) personalizing initial patient’s treatments, and (4) adapting the initial 
treatment to individual’s responses, where the two middle steps can be repeated at 
each radiation dose fraction (or few fractions) so that optimal treatment objectives 
are met and potentially long-term goals are optimized, i.e., long-term tumor control 
with limited side effects to surrounding normal tissues.

The first step in the implementation of an ACT-ART framework starts at the plan-
ning stage of patients by extending the current “image-only patients” into a more 
general preparation stage that can incorporate all relevant informatics signals for 
evaluating available treatment options, c.f., Fig. 18.1a, b. Thus, imaging information 
(CT/PET/MRI) is supplemented with biological markers (genomics, transcrip-
tomics, proteomics, etc.) that can potentially aid the process of personalizing treat-
ment to an individual patient’s molecular characteristics and is not limited to 
imaging only as currently is the case as discussed later in the chapter. To develop an 
ACT framework, there are three essential questions pertaining to the successful 
development that need to be addressed [9]:

Q1 What knowledge should be synthesized for ACT planning?

Q2 How can we develop powerful predictive outcome modeling techniques based 
on such knowledge?

Q3 How can we use these models in a strategically optimal manner to adapt a 
patient’s treatment plan?

The answer to these questions will be the subject of the subsequent sections of 
this chapter.

18.3  What Knowledge Is Needed for ACT?

There are four major types of oncology data that are potentially useful as part of the 
knowledge synthesis for ACT-ART: clinical, treatment, imaging radiomics, and 
biological data. To understand why and how they can be informative for assessing 
treatment outcomes, we provide a brief description about these four categories 
of data.

18.3.1  Clinical Data

Clinical data refers to cancer diagnostic characteristics (e.g., grade, stage, histology, 
site, etc.), physiological metrics (e.g., blood cell counts, heart/pulse rates, pulmonary 
measurements, etc.), and patient-related information (e.g., comorbidities, gender, age, 
etc.). Due to their nature, clinical data can usually be found in unstructured format 
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such that it the direct extraction of information can be challenging. Therefore, machine 
learning techniques for natural language processing could be useful for transforming 
such data into structured format (e.g., tabulated) before further processing [10].

18.3.2  Treatment Data

Treatment oncology data or dosimetric data in the context of RT for instance are infor-
matic to the treatment planning process in RT, which includes simulated calculation 
of radiation dose using computed tomography (CT) imaging. In particular, dose–vol-
ume metrics obtained, for example, from dose volume histograms (DVHs) are exten-
sively investigated for outcome modeling [11–15]. Useful metrics are typically the 
volume receiving greater than or equal to a certain dose (Vx), the minimum dose to the 
hottest x% of the volume (Dx), mean, maximum, minimum dose, etc. [16]. Notably, a 
dedicated software based on MATLAB called “DREES” can derive these metrics 
automatically and apply them in outcome prediction models of RT response [17].

18.3.3  Imaging Data

Quantitative imaging data or radiomics is a field of medical imaging study that aims 
to extract meaningful quantitative features from medical images and relate this 
information to clinical and biological endpoints. The most common imaging modal-
ity is CT, which has been considered the standard for treatment planning in oncol-
ogy and RT specifically. Other imaging modalities include positron emission 
tomography (PET), and magnetic imaging resonance (MRI).

18.3.4  Biological Data

A biomarker can be defined [18] as “a characteristic that is objectively measured 
and evaluated as an indicator of normal biological processes, pathological pro-
cesses, or pharmacological responses to a therapeutic intervention.” Measurements 
of biomarkers are typically based on tissue or fluid specimens, which are analyzed 
using molecular biology laboratory techniques [19] and have the following two cat-
egories according to their biochemical sources:

 (a) Exogenous biomarkers: by injecting a foreign substance into patients such as 
that used in molecular imaging and are used in radiomics applications.

 (b) Endogenous biomarkers: there exists two subclasses within this category:
• Expression biomarkers: changes measured in protein levels or gene 

expression.
• Genetic biomarkers: measuring variations between the underlying DNA 

genetic code and tumors or normal tissues.
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18.4  How to Develop Outcome Models Using 
This Knowledge?

The modeling of treatment response is primary objective of modern oncology 
research as it is a key toward personalization of cancer care. In the following, we 
will provide a brief description of this subject in the context of RT, interested read-
ers are referred to Chap. 15, which is dedicated to this subject or consult the litera-
ture for more details [20].

RT outcome models are typically expressed in terms of tumor control probability 
(TCP) and normal tissue complication probability (NTCP) [21, 22]. In principle, 
both TCP and NTCP may be evaluated using analytical and/or data-driven models. 
Though the former provides structural formulation, it can be incomplete and less 
accurate due to the complexity of radiobiological processes. On the other hand, 
data-driven models tend to learn empirically from the data observed, and thus they 
are capable of considering higher complexities and interactions of irradiation with 
the biological system. The trade-offs between analytical models and data-driven 
models can vary in terms of radiobiological understanding and prediction accuracy. 
Here, we will focus on machine learning methods only.

Traditionally, feed-forward neural networks were extensively investigated to 
model post-radiation treatment outcomes for cases of lung injury [23, 24] and bio-
chemical failure and rectal bleeding in prostate cancer [25, 26]. Subsequently, sup-
port vector machines (SVMs), as universal constructive learning procedures based 
on the statistical learning theory [27] were utilized. For discrimination between 
patients who are at low risk versus patients who are at high risk of treatment, the 
main idea of a SVM would be to separate these two classes with “hyper-planes” that 
maximize the margin between them in the nonlinear feature space defined by an 
implicit kernel mapping [28–30]. However, these methods have been stigmatized as 
black boxes, hindering their application in practical clinical contexts. In an effort, to 
alleviate the black box stigma of generic machine learning methods and incorporate 
more system-like approaches methods based on graphical approaches such as 
Bayesian networks (BNs) have witnessed increased used in outcome modeling of 
cancer [31–36]. A BN provides graphical representation of the relationships between 
the variables represented as nodes in a directed acyclic graph (DAG), which encodes 
the presence and direction of relationship influence among the variables themselves 
and the clinical endpoint of interest. The relationship between parent and child 
nodes is modeled by conditional probabilities using Bayes chain rule. More recently, 
methods based on deep learning were adopted for outcome prediction [37, 38], with 
their distinct ability to learn from raw data. More details are discussed in Chap. 15.

18.5  How to Optimize Adaptation?

Machine learning offers a wide variety of tools for adapting decision-making. 
Specifically, dynamic machine learning algorithms such as reinforcement learning 
(RL) have been adopted in the design of adaptive clinical trials to estimate dynamic 
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treatment regimens [39]. For instance, the sequential multiple assignment random-
ized trial (SMART) has been applied for constructing adaptive interventions in dif-
ferent diseases related to drug abuse, HIV/AIDS, and mental illness with promising 
results [40]. However, this systematic approach has not been applied in (radiation) 
oncology. Berry argues that the potential benefit of adaptive designs is greatest in 
complicated settings exemplified by personalized medical research in oncology and 
suggests the use of Bayesian approaches to optimize sequential decision-making. 
However, the framework is yet to be defined in this case and optimality conditions 
still need to be proven for yielding the desired outcomes [41]. In radiation oncology, 
Kim et  al. presented a simulation study based on Markov decision processes 
(MDPs), where they showed numerical examples of modifying dose fractionation 
schedules for adaptive RT applications [42]. Moreover, RL methods we also used to 
optimize the dose per fraction using different utility functions in cell culture experi-
ments [43].

For modeling the ACT, we can use a reinforcement machine learning framework 
[44]. In this framework, the clinical (radiotherapy) environment is represented by a 
Markov decision process (MDP) as shown in Fig.  18.2. In the case of adaptive 
radiotherapy, at any time point (t) during the treatment adaptation there is a state st 
to describe a patient’s biological status (e.g., tumor volume, tumor response (TCP) 
and toxicity risk of surrounding organs (NTCP)) and a reward associated to the 
state, Rt = Rt(st), to evaluate the current patient status, and then an external action (at) 
(e.g., boosting the active part of the tumor, modifying the number of fractions, 
changing the fraction size, adding/removing chemotherapy agent, etc.) to be made 
by an agent (treating team). In the MDP setting, states and rewards are preordained 
pertaining to simulate a patient’s biological configuration. An agent has no ability to 
directly change these factors, where it is only possible to influence a patient’s state 
via agent’s actions, so that the actions at are the only external variables to affect the 
MDP dynamics. The optimal decision of an action is based on maximizing the sum 
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of rewards in Eq. (18.1) such that a patient’s tumor response (TCP) is highest and 
toxicity risk of surrounding organs (NTCP) is the lowest, for example.

Intuitively, one can imagine initially an agent has no knowledge of the relation 
between (st, Rt, at), much like new-born babies learning to interact with the world; it 
is through numerous trial-and-error process to understand the interactions between 
the three variables. This is where powerful statistical tools may help to clarify the 
relations and where machine learning involves. Most of the advanced deep rein-
forcement learning algorithms are dedicated to the interaction-learning process, 
e.g., Soft-Actor-Critic (SAC), Trust Region Policy Optimization (TRPO), Actor- 
Critic methods (A2C/A3C), etc.

The descriptions above can be described mathematically by an objective (of the 
MDP) to be maximized:
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where 0 ≤ γ ≤ 1 is a constant called discounting rate and π : S → A is called a policy 
(to be determined) that links actions at to states st, π(st) = at, Essentially, the policy 
function π is exactly the interaction an agent likes to figure out as mentioned above, 
where in medical physics term it corresponds to a given treatment adaptation policy 
desired.

Interestingly, taking γ = 0 in Eq. (18.1), Qπ (s = s0, a) = R(s0), is equivalent to 
saying that an agent is extremely myopic, who only regards the current reward or 
short- term gains. In contrast when γ = 1 in Eq. (18.1) leads to an agent that looks 
into futuristic rewards or long-term gains. From the mathematical point of view, 
Eq. (18.1) as a definition is intuitive to comprehend but it is intractable for compu-
tational purposes due to the infinite sum involved. Therefore, one usually would 
convert Eq. (18.1) into a more computationally amicable form called Bellman 
equation:

 
Q s a E R s a Q s ai s P s a a A
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1 , , ,, γ max  (18.2)

such that lim
i iQ Q
→∞

∗→ , which is equivalent to Eq. (18.1). It can also be proved that 
the convergent point Q∗  of the numerical iteration from the Bellman equation is 
optimal [27]. Once the optimal Q∗ is derived from Eq. (18.2), one can subsequently 
solve for the corresponding policy function π defined by:
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which completes the interaction between (st, Rt, at) as mentioned above. It is now 
clear that such link is achieved through the complex Q-function defined in Eq. 
(18.1). As such, the approach deriving a policy is called Q-learning [28], which is 
usually encountered in ACT applications.

In fact, there is another algorithm to derive a policy function π via the policy- 
gradient method [45]. However, the details are not in the scope of our discussion 

18 Smart Adaptive Treatment Strategies



446

here. A quick sketch is that a family of parametrizable functions πθ(st) = at is used to 
directly approach the optimal policy π∗ such that πθ → π∗, see [45].

18.5.1  Classical MDP/RL Learning

To compute the Bellman equation, one needs to find a proper functional form to 
approximate each Qi in Eq. (18.2). One traditional method assumes that it can be 
approached with a linear sum over a functional basis f j j

n{ }
=1

,
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where the unknown parameters αij j

n{ }
=1

 in Eq. (18.4) can be determined by usual 

linear regression. Note that Eq. (18.4) does not imply that Qi is linear, as the Taylor 

expansion of sin
! !

x x
x x

≈ − + −…
3 5

3 5
 is a decent analog to Eq. (18.4), where none 

of {sinx, x, x3, x5} is a linear function. Due to the general observation that the optimal 
Q∗ is in general highly nonlinear, such classical assumption suffers from two draw-

backs: (a) how to choose a suitable functional basis f j j

n{ }
=1

 beforehand for solving 

Q∗? and (b) how many functional members are to be used? (i.e., choice of n). In fact, 
any improper choice of (a) or (b) easily leads to overfitting or underfitting for the 
Q-learning. Nevertheless, this approach serves as a viable solution at least.

18.5.2  Deep MDP/RL Learning

The introduction of deep learning (Chap. 4) allows the predicament of the classical 
approach to extract relevant features from raw data to be evaded, since deep learn-
ing, utilizing deep neural networks (DNNs), provides a strong nonlinear approxima-
tor to almost every continuous function, which was rigorously proven in the 
Universal Approximation Theorem by Hornik [46].

To take advantage of deep learning, one simply approximates Qi in the Bellman 
equation of Eq. (18.2) with a DNN Qi

θ , i.e., Q Qi i← θ  with θ denoting the neural 
weights. By this simple replacement, one avoids drawbacks (a), (b) of the classical 
method at once fundamentally, as DNN requires only little assumption on functions 
to be approximated. This DNN approximation of Q Qi i← θ  is known as the Deep 
Q-Net (DQN) proposed by Google [47]. DQN is the cornerstone of Deep 
Reinforcement Learning (DRL).

Apart from the fact that DRL learns the environment interaction more efficiently, 
a tricky problem to be addressed in oncology or radiotherapy applications is the 
modeling of the transition probability. By definition it describes how two states 

transit under an action s s
a

→ ′ , denoted by s′~P(s, a), where in the course of a treat-
ment this represents the transition of a patient’s biological status affected by a given 
dosage. Therefore, from medical perspective it is crucial to grasp the knowledge of 
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transition probability modeling as it is eventually used in Eqs. (18.1 and 18.2) for 
Q-function computation.

18.6  ACT Example in Radiotherapy

In following we present an example of an ACT framework in the context of adaptive 
radiotherapy in non-small cell lung cancer (NSCLC). In a population of 42 patients 
who had inoperable or unresectable stage II to stage III NSCLC, the patients were 
enrolled in an adaptive RT-escalated dose study to improve local tumor control at 
2-years. The adaptation was based on 18F-deoxyglucose (FDG)-avid region detected 
by mid-treatment positron emission tomography (PET) as shown in Fig. 18.3 [48]. 
Conformal RT was individualized to a fixed risk of Radiation Pneumonitis (RP) 
(grade > 2) and adaptively escalated to the residual tumor defined on mid-treatment 
FDG-PET up to a total dose of 86 Gy in 30 daily fractions.

Figure 18.4 in [49] illustrates a detailed construction of a radiotherapy environ-
ment. The main idea was to use important features indicative of tumor Local Control 

Fig. 18.3 Example of a NSCLC patient on an adaptive RT-escalated dose study to improve local 
tumor control by adaptation based on 18F-deoxyglucose (FDG)-avid region. [Left]: Pretreatment 
PET/CT plan showing original uptake. [Right]: mid-treatment PET/CT plan showing residual 
uptake for adaptation

Approximated
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reconstruction

DQN agent

patient
data
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reward R
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Fig. 18.4 Reinforcement learning for making decisions at two-third period of a treatment (right 
solid- green arrow). A first step in their framework is to learn transition functions from the historical 
data of two transitions recorded (RHS figure) so that the radiotherapy environment can be recon-
structed (called approximated environment). With the transitions simulated, a DQN agent can then 
search for optimal dose at each stage [49]

18 Smart Adaptive Treatment Strategies



448

(LC) and Radiation Pneumonitis (RP) after a complete treatment. In their study, 
factors of cytokines, SNPs, miRNA, and PET radiomics are considered informative 
as predicted by Bayesian Network (BN) analysis in [34]. They defined the BN 
selected features as states st with a properly defined reward Rt, combined with a set 
of DNNs to learn the transition probability s′~P(s, a) from historical patient data.

Once a suitable radiotherapy environment is set up, Deep Reinforcement 
Learning can then be utilized to efficiently learn the MDP dynamical interaction, 
where in the study [49] they deployed DQN to optimize the total rewards for deriv-
ing optimal adaptation dose, i.e., an optimal policy π∗ : S → A.

18.7  Discussion and Recommendation

Smart adapted cancer treatments (ACTs) heavily rely on the proper integration 
of various components: information retrieval, multimodal data processing, sta-
tistical inference, and optimal control. Current machine learning techniques 
provide many opportunities to offer its help for improving ACT application. 
However, it is not yet entirely mature for us to wield these tools for clinical 
application. One major reason is due to the lack of comprehensive understand-
ing of biological mechanisms of human body. Unlike healthcare, machine learn-
ing algorithms can be easily applied to industry with proper design and 
customization to complete desired tasks. Very often, one cannot be sure whether 
the data at hand is sufficient for prediction or desired treatment goals. Due to the 
uncertainty in many aspects, only when the algorithm is smartly implemented 
and correctly integrated then the adapted treatments can be executed 
successfully.

For example, it is noted in defining an MDP environment for an oncology treat-
ment such as radiotherapy, there is no uniform way or standard procedure regarding 
the selection of indicative features. Although in the study [34], SNPs, miRNA, and 
PET radiomics, etc. MDP are adopted as states, other suitable or more effective 
choices may exist. Therefore, an MDP environment construction and setup requires 
intensive medical experience and background knowledge, and thus it serves a large 
field to be extensively explored.

On the other hand, to apply RL in oncology or radiotherapy effectively, there 
is also the art versus science of machine learning algorithm selection to be 
attended based on the nature of a task. Due to the variability of datasets and their 
intrinsic properties, it is unlikely to have a universal learning algorithm that fits 
all purposes. Particularly in the case of Deep Learning, a multilayered neural net 
generally serves as a black box. More attention to the analysis of medical inputs 
and outputs are required. Some interpretability tools developed such as LIME 
(Local Interpretable Model-Agnostic Explanations) [50] may be used to help 
provide better understanding of the performance of the machine learning 
algorithm.
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18.8  Conclusions

An adapted cancer treatment is an approach to personalize medicine, where the 
characteristics and response of an individual are to be incorporated into the treat-
ment prescription. An important factor to achieve these adaptations is the ability to 
improve prediction power, so that a treatment can be planned and adjusted before-
hand. For a long time, it has been clinical team role to perform these tasks based on 
their professional medical training. With the maturity of statistical tools and com-
puting hardware, machine learning methods has proven to be able to provide addi-
tional prediction power by mining hidden information and unnoticed patterns 
embedded in the numerical data. Among many possibilities, imaging data (PET/CT/
MRI), radiomics, biological metrics, physiological information are known to pro-
vide valuable knowledge to be incorporated for adaptation; this is where the concept 
of knowledge-based response-adapted radiotherapy can reach its potentials.

Recent evolution in imaging and biotechnology is a major advantage to reshape 
the understanding of oncology response. However, to achieve the knowledge-based 
response-adapted radiotherapy goal one needs to be able to handle the complexity 
of treatment effects and consider the variability of tumor and normal tissue responses 
increase. With and after proper information fusion, one can then provide accurate 
and efficient methods for cancer treatment decision-making. One will rely on 
advanced algorithms for processing multidimensional data to achieve such goal, 
and the solution can be offered by current machine learning development. It is 
therefore the driving force why machine learning and deep learning have gradually 
become indispensable tools for better delineation of these complex interaction 
mechanisms such as the case in adapting treatment to patient’s response.
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19Artificial Intelligence in Clinical Trials

Hina Saeed and Issam El Naqa

19.1  Introduction

The overall survival and quality of life for many cancer patients has improved dra-
matically due to the advancement in surgeries, devices, radiation techniques, sys-
temic therapies including targeted agents, statistical tools, and evolution of clinical 
trials. It has been repeatedly estimated that 3–5% of adult cancer patients enroll in 
cancer clinical trials [1, 2]. This figure has now been estimated to be 8% [3]. 
Conversely, the vast majority of adult cancer patients (>95%) do not participate in 
clinical trials, even though 70% of Americans are estimated to be inclined or very 
willing to participate in clinical trials [4]. In order to improve the trajectory of 
oncology research, it is imperative to employ innovative ways to close the existing 
large gap between trial participation rates and the willingness of patients to partici-
pate as well as improve quality and patient safety through federal and international 
policies and ethics codes in clinical trials (Fig. 19.1).

19.1.1  Background on Clinical Trials in Oncology and Radiology

In order to maintain a quality environment for patient care in clinical trials, it is vital 
to understand the history of clinical trials, including successes, failures, and the risk 
for patient endangerment. Early experiments in oncology on human subjects can be 
traced to Rudolf Virchow’s work in 1863 tracking cancer to its cellular origin by 
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using a microscope [6]. A one-room laboratory in 1887 (later became National 
Institute of Health (NIH)) was established and National Cancer Institute (NCI) was 
formed in 1937 [6]. In the mid-1950s, NCI began to fund cooperative oncology 
groups in an effort to expand enrollment in clinical trials. The Clinical Trials 
Cooperative Group Program was originally composed of four pediatric and nine 
adult groups. The initial consolidation occurred in 2000 when the four pediatric 
groups became one group and the next one occurred in 2014, when the nine adult 
groups were merged into four adult groups. The Cancer Therapy Evaluation Program 
(CTEP), oversees the cooperative oncology groups [7].

By 1973, most oncology clinical trials were conducted at NCI-designated com-
prehensive cancer centers that received core grants from NCI to fund operations. 
According to NIH factsheet, approximately 80–85% of patients with cancer are 
seen and treated at community cancer centers or hospitals near their home commu-
nities with access to a wide array of clinical trial opportunities [3, 8]. In 2013, NCI 
Community Oncology Research Program (NCORP) was formed to bring state-of- 
the-art cancer prevention, control, treatment, and imaging clinical trials; cancer care 
delivery research; and disparities studies to individuals in their own communities. In 
2004, the U.S. Food and Drug Administration (FDA) introduced the Critical Path 
Initiative with a goal of accelerating translation of basic research to safe and effec-
tive medicine and treatment options for patients [9]. This fostered identification of 
various biomarkers and other tools used to improve patient outcomes and survivor-
ship rates and uncovered the potential to treat patients with targeted therapy, based 
on biomarkers and molecular abnormalities.

Fraudulent claims of safety and efficacy related to drugs and devices were ram-
pant in the United States in the late 1800s, resulting in serious injuries and deaths 
and prompting a series of actions that started with the Food and Drug Act in 1906. 
Other major events included Declaration of Helsinski (international ethical 
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guidelines) in 1964 [10], Belmont Report in 1979 that framed the concept of insti-
tutional review boards (IRBs), outlined protocol design criteria, and laid the recom-
mendation for obtaining informed consent from all research subjects [11], Common 
Rule [12], and Health Insurance Portability and Account-ability Act (HIPAA) in 
2003. Federal Wide Assurance for the Protection of Human Subjects (FWA) was 
passed in 2005 enforcing that all research involving nonexempt human study par-
ticipants be subject to federal regulations and must be guided by ethical principles 
that includes the Belmont Report and Common Rule [13].

Lack of access to state-of-the-art healthcare; cultural or ethnic factors; economic 
status; language or literacy barriers; and long-standing fear, apprehension, and 
skepticism have been identified as obstacles to minority participation in clinical tri-
als [12, 14]. Despite FDA mandated exclusion in 1977 of women in their childbear-
ing years from participation in phase I clinical trials because of concerns about the 
potential teratogenic effects, in practice, the exclusion was extended to all women 
in all phases of clinical trials [15]. These policies severely limit knowledge about 
gender- and race-related differences in drug safety and efficacy [15–17], where 
members of racial and ethnic minorities, low-income individuals, and people who 
live in rural areas remain underrepresented [18]. The NIH Revitalization Act of 
1993 mandated the inclusion of women and minorities in all NIH-sponsored clinical 
trials [19].

Since children represent a vulnerable population, special protections have been 
implemented to safeguard their treatment [20–22]. Additionally, children younger 
than 18 years old are now asked for their assent if they are mature enough to under-
stand the expectations of the study trial. Although assent, unlike informed consent, 
is not required by law, many IRBs require it.

Cancer incidence and mortality rates are highest in elderly population. Despite 
FDA recommending guidelines for inclusion of older adults in clinical trials in 
1989, they continue to be proportionally underrepresented in clinical trials [18]. 
Suggested reasons for underrepresentation include concerns about toxicities, the 
presence of comorbid conditions, perceived lack of benefits, advanced stage of dis-
ease at diagnosis, lack of awareness, quality-of-life concerns, and a variety of socio-
economic barriers [23–25]. The exclusion of the elderly not only limits the 
generalizability of results but can also be costly as elderly will not be treated effec-
tively due to misconceptions about tolerance [23, 25, 26] as seen in the clinical 
example of Glioblastoma multiforme (GBM) [27]. Today, cooperative group trials, 
such as treatment (e.g., chemotherapy), quality-of-life trials, and registries, are 
designed specifically to include older adults.

In 2010, with the intent to improve access to care, the Patient Protection and 
Affordable Care Act (PPACA) led to the development of Patient-Centered Outcomes 
Research Institute (PCORI) and introduced requirements for insurance companies 
to provide coverage for routine costs associated with clinical trial participation [28]. 
With this in place, patients are able to choose the best option for treatment without 
worrying that certain tests or procedures will not be covered based on their partici-
pation in a clinical trial [29].
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Due to improvements in policies, technology and clinical trials, the rate of cancer 
deaths began to decline by 1991 and continues to do so [30]. However, a lot still 
remains to be done. The focus today is not only the treatment and prevention of 
cancer but also symptom management and quality of life, genomics, personalized 
medicine, and biospecimens.

The number of clinical trials for patients with cancer dwarfs that of any other 
single disease, with cancer clinical trials comprising 22% in 2010 using 
ClinicalTrials.gov database to recently between 40% and 50% of all trials conducted 
in the United States [31, 32]. Oncology trials are predominantly early-phase studies 
that evaluate surrogate endpoints. They tend to be small, single arm, and open label. 
This orientation toward less robust design differs significantly from trials in other 
areas of medicine. Despite a wide variation in treatment options and survival 
between cancer types, the proportion of small, single-arm studies does not vary 
significantly between cancer types, and there is only moderate correlation between 
the number of trials for a given cancer type and relative incidence or mortality. 
Unfortunately, the high prevalence of small trials that lack comparator arms, rely on 
historical controls, and lack randomization limit the ability to assess the evidence 
supporting specific treatments through systematic reviews and comparative effec-
tiveness research. Of note, this registry is not complete and suffers from a lack of 
standard ontology [33].

In order to effectively leverage limited resources, it is paramount to accurately 
characterize the current state of clinical research and available technology. Subsequent 
insights and metric development will allow us to monitor the activity and advance 
innovative approaches. The research community must take into account competing 
priorities, the importance of particular research questions, the urgency of disease, and 
the availability of trials across geographic regions and disadvantaged populations. It is 
essential to develop not only breakthrough treatments, but also improve the use of 
existing treatments. As nations such as the United Kingdom attempt to coordinate 
their approach to clinical research to align it better with public health priorities, we 
have an ongoing national debate in the United States regarding research priorities 
[34]. With the reorganization of the cooperative group system and implementation of 
PPACA, it is essential to prioritize research questions appropriately, understand the 
ideal mix of trials and be open to innovative trails that are more applicable in the mod-
ern era so as to optimize the generation of actionable evidence. Success from a finan-
cial and clinical research standpoint is going to become increasingly reliant on big 
data (including real-world data) dependent predictive analytics, real-time clinical 
decision support, precision medicine, and proactive population health management 
and these are driven largely by groundbreaking research in artificial intelligence (AI), 
which promises to transform the current clinical trial landscape.

19.1.2  Clinical Trials as the Gold Standard for Clinical Practice

Randomized controlled trials (RCTs) are the reference standard for driving clinical 
practice. RCTs measure the effectiveness of a new intervention or treatment [35]. In 
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order to provide a true, reliable assessment of effectiveness, RCTs need to be con-
ducted prospectively and robustly. In a commentary describing six consecutive 
series of Phase III controlled trials, it was noted that when randomized care replaces 
random, opinion-based care, incremental progress can be anticipated in any spe-
cialty [36].

Although no study is likely on its own to prove causality, randomization reduces 
inherent bias and provides a rigorous tool to examine cause–effect relationships 
between an intervention and outcome. This is because the act of randomization in a 
large study balances participants’ characteristics (both observed and unobserved) 
between the control and treatment groups, allowing attribution of any differences in 
outcome to the intervention [37].

All RCTs should be prospectively registered with a clinical trials database to 
avoid selective reporting [38]. When designing a clinical trial, the initial step is to 
carefully select the population, the interventions to be compared and pre-specified 
outcomes of interest. Once these are defined, the number of participants needed or 
the power calculation, the time scale of the study and the statistical and qualitative 
methods for analysis are determined. All RCTs should have appropriate ethical 
approvals and a trial protocol documenting full details of all trial processes. With 
appropriate ethical approvals in place, participants are then recruited, stratified (if 
needed) and randomly assigned (such as computer-generated randomization) to 
either the intervention or the comparator group. Following randomization, RCTs 
can be blinded if feasible so that the participants, doctors and nurses as well as 
researchers do not know what treatment each participant is receiving, further mini-
mizing bias [39, 40].

RCTs can be analyzed by intention-to-treat analysis (ITT; subjects analyzed in 
the groups to which they were randomized), per protocol (only participants who 
completed the treatment originally allocated are analyzed), or other variations, with 
ITT often regarded least biased [41]. Adherence to the CONSORT (CONsolidated 
Standards of Reporting Trials) 2010 guideline enables readers to understand a trial’s 
design, conduct, analysis and interpretation, and to assess the validity of its results. 
It contains a 25-item checklist and flow diagram template to improve the reporting 
in both groups of parallel RCT enabling [42].

RCTs can have their drawbacks, including their high cost in terms of time and 
money, problems with generalizability (participants that volunteer to participate 
might not be representative of the population being studied) and loss to follow up 
[43]. Besides careful conduction and interpretation of the study, potential conflict of 
interests and funding sources should be disclaimed [44]. Finally, the principle of 
equipoise should be met prior to and during the conduction of an RCT [45].

19.1.3  Why Do Clinical Trials Fail?

Clinical trials are prone to many opportunities for failure. The investments of 
resources, time, and funding grow with successive stages, from preclinical through 
phase III. Thus, the cost of a failed phase III trial is not just the cost associated with 

19 Artificial Intelligence in Clinical Trials



458

the trial itself but the cost of all prior trials as well as the cost of lost time pursuing 
an opportunity to advance patient treatment and the efforts of the enrolled patients. 
It is important to maintain a philosophy of continual improvement with respect to 
clinical trials broadly and specifically with an aim toward optimizing every aspect 
of the research to justify merit in continuing to the next stage. Failures can arise due 
to multiple reasons—ranging from a lack of efficacy, issues with safety, a lack of 
funding to complete a trial, inability to maintain good manufacturing protocols, not 
following FDA guidance, or issues with patient recruitment, enrollment, and reten-
tion [46].

The primary source of trial failure has been and remains an inability to demon-
strate efficacy. An assessment of 640 phase 3 trials with novel therapeutics found 
that 54% failed in clinical development, with 57% of those failing due to inadequate 
efficacy, 17% due to safety concerns and 22% failed due to commercial reasons. 
There are many reasons that potentially efficacious drugs can still fail to demon-
strate efficacy, including a flawed study design, an inappropriate statistical end-
point, or an underpowered clinical trial which may result from insufficient 
enrollment and retention. Cancer drugs were significantly less likely to gain Food 
and Drug Administration (FDA) approval [47].

Clinical trials also fail with respect to safety. Safety is addressed in every clinical 
trial in every phase, but issues with safety may only become apparent with the larger 
populations associated with phase 3 studies, or at post-approval (phase IV) or post- 
market phase [47]. The appearance of rare toxic side effects (with the use of 
approved drugs) found as a result of spontaneous reporting and other unreliable 
detection methods has led to increased attention to phase IV research. This phase 
employs much more rigorous research methodology involving large datasets with 
obligatory and uniform reporting that can be queried in near real time to provide 
information on real-world efficacy and toxicity data. The need is further increased 
by the development of accelerated pathways to drug approval especially in areas 
without any effective treatments, such pathways lead to licensure without rigorous 
clinical efficacy data [48]. It is important also to recognize the desire for a sponsor 
to move a drug or device forward in the clinical trial process. Rushing studies into 
phase 3 after successful phase 2 trials may not provide time for reflection on how 
best to address safety in phase 3 and can be detrimental form a cost perspective as 
well [49].

Identifying safety issues is not always straightforward. People may have a greater 
propensity to present for care when they experience an adverse event that is of con-
cern to them, and not necessarily when experiencing an adverse event of less con-
cern to them but greater concern to the physician. This can influence which adverse 
events are reported, particularly if they are mild to moderate in severity. Reminding 
patients of the importance of reporting any adverse events and recording the patient- 
reported tolerability is recommended for improving the likelihood of detecting 
safety issues earlier rather than later [50].

Considering the huge cost involved, many trials (in phase 3, but also earlier) are 
underfunded, and may not have any reasonable opportunity to generate a positive 
outcome (even if protocols are amended, at additional cost) [51]. More generally, 
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particularly in the United States, the cost of complying with an increasing regula-
tory burden is also impactful, necessitating more staff, storage, and financial expen-
diture [52]. Underfunded trials are by definition more likely to be underpowered and 
thus, fail to demonstrate statistical significance at a predefined level of efficacy.

Such a premature discontinuation of trials for strategic reasons is ethically flawed 
as it deceives the patients, jeopardizes the patient-doctor relationship, and harms the 
medical community. Patients generally have an expectation that their participation 
in a trial will lead to an advancement of knowledge based on the trial’s successful 
completion. Effort should be made to have patient representatives on steering com-
mittee and decrease or eliminate the involvement of the sponsor to limit the risk of 
premature discontinuation [53, 54].

In an ideal world, the inclusion/exclusion criteria should result in enrolling popu-
lation that matches statistically the intended general patient population [55, 56]. 
However, researchers may have concerns such as the presence of multiple co- 
morbidities, leading to additional risk of withdrawal and adverse events. They must 
consider the availability of competing therapies when designing a study. Many 
oncology studies have very specific inclusion/exclusion criteria based on prior treat-
ment. Targeted treatments will exacerbate this issue as diagnostics screen out more 
individuals. Exclusion criteria are often presented without an explicit rationale 
including an attempt to exclude participants who may not show sufficient improve-
ment against an endpoint, because their health is too good [57]. These factors can 
affect the duration and cost of a trial and eventually result in protocol amendment 
[58]. As many as 16% of protocol amendments are due to changes in inclusion/
exclusion criteria, which can lead to differences in the patient populations before 
and after the amendment. Furthermore, across 3400 clinical trials, more than 40% 
had amended protocols prior to the first subject visit, delaying trials by 4 months 
[59, 60]. Some protocol amendments cannot be avoided; however, the potential for 
amendments can be reduced with better planning and anticipation of the conse-
quences from design choices.

Despite the often seen patients’ willingness to consent to participation in a clini-
cal trial based on a belief that they might receive better treatment or the results of 
the trial can help others [4, 61–63], enrolling a sufficient number of subjects in a 
trial continues to be a long-standing problem [64, 65]. A UK study indicated that 
only 31% of the trials met enrollment goals [66]. Studies indicate that between 18% 
and 40% of centrally sponsored NCI trials fail to meet sufficient accrual goals to 
answer the study questions, with somewhere between several hundred to a thousand 
patients per year enrolled in these trials [67–69]. A broader study looking at cancer 
trials across all sponsors similarly found a rate of failure due to low accrual of 20%, 
with more than 6800 patients per year enrolled in these failing trials [70]. In addi-
tion, Campbell et al. reported that one-third of publicly funded trials required a time 
extension because they failed to meet initial recruitment goals [71]. Overall, trial 
participation rate averages 14.8% at academic centers and 6.3% at community cen-
ters. Over half of patients will not have a local trial available as a result of decisions 
about which trials an institution opens. Forty percent of patients with trials available 
(17% of total) will not be eligible to enroll on a trial due to eligibility requirements 
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established during the trial’s design. Ultimately, 8% will enroll in a trial and 18% 
will not enroll. Multiple studies show that around 30% of eligible patients will not 
be asked to participate. Only a small fraction of patients overall ever has the oppor-
tunity to consent to a request to participate in a clinical trial, and when asked, over 
half typically agree [3, 69, 72].

Some studies offer remuneration to patients, generally to cover the patients’ time 
and expenses but also in the hope that recruitment will be improved. While logic 
suggests that this might improve recruitment and patients sometimes report this as 
being important to them [73], evidence supporting this has been generally inconclu-
sive [74–76]. However, Edwards et  al. found that monetary incentives increased 
participant response to postal and electronic questionnaires [77]. Surveys show, 
however, that a high remuneration is often associated in patients’ minds as being 
associated with a perception of higher risk in the trial and thus a reluctance to enroll 
[73, 78]. The effect and effectiveness of remuneration may depend on many factors 
and should remain an open area of research. Beyond remuneration, the additional 
costs associated with patient recruitment can be difficult to estimate and highly vari-
able [79]. Marketing strategies can play an important role in the financial viability 
of some trials [80].

Healthcare providers can have a significant impact on patient recruitment and 
retention. Physicians are consistently rated as the most trusted source of information 
by patients [81]. Surveys consistently show that patients with cancer who have 
enrolled on trials first heard of a trial from their physician, and provider recommen-
dation is a leading factor in enrolling on a trial [81, 82]. A site that has historically 
little focus on clinical trials or presents other non-scientific impediments may lead 
to low investigator enthusiasm and is associated with low recruitment [83]. Non-PIs 
have been shown to enroll fewer patients than PIs [84]. Issues can also arise when 
the investigator has competing trials. Studies have shown that the quality of the 
discussion around clinical trials as a treatment option is highly variable; however, 
training can improve this conversation [85, 86].

Specialized, dedicated, in-house research personnel, have been shown to sig-
nificantly increase site enrollment [87–89], and providers have reported lack of 
staffing as a leading barrier to enrolling patients in cancer clinical trials [90, 91]. 
Recruitment and retention can suffer when patients perceive support staff to be 
unavailable or uninterested, or if they have to interface routinely with new staff or 
a lack of prioritizing the clinical trial over day-to-day operations [72, 92]. Given 
these challenges, retention of quality research staff is imperative. Frequent turn-
over of staff can lead to greater numbers of inexperienced study coordinators, 
which can impact the data quality and timeliness of completing a trial [93]. 
Increasing job satisfaction and incentivizing staff (providing funds for enrolling 
patients) has been shown to improve patient recruitment [72, 94]. Using nurses 
instead of surgeons to perform recruitment has not evidenced any difference in 
outcomes; however, cost savings have been realized [95, 96] which may be impor-
tant in supporting recruitment and retention, or other aspects of the clinical trial, 
indirectly.
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Study centers with a track record of successful performance are historically more 
likely to meet enrollment targets [59]. Smaller sites, or those with few or no clinical 
trials, can still help patients consider and find clinical trials, but these sites typically 
lack the staff and infrastructure to do so [52, 97–99]. Several factors most associated 
with above-average recruitment rate: implementation of a systematic pre-screening 
of patient for trial matching, engagement of other staff, time from ethics approval to 
first recruit, and the provision of a dedicated trial coordinator [100, 101]. Proper site 
selection in terms of having a nearby larger population pool and minimizing total 
time investment including travel time [102] has been correlated positively with the 
likelihood of meeting recruitment targets patient recruitment and retention is 
affected negatively when patients are concerned about being assigned to a control 
group rather than receiving active study drug [103–105]. Part of this effect may be 
due to patients having poor knowledge about placebos or what specific treatment is 
given in the control group [106]. For patients with poor prognoses, the concern may 
center around not having effective treatment at all. Other concerns the patients 
might have is fear of side effects [90], logistical challenges in terms of time and 
travel [90, 107–109] especially if elderly [110] and any associated costs such as lost 
work or medical expenses [104, 108, 111, 112]. The cost of participating under 
these circumstances may biase participation to those in higher socioeconomic levels 
[25, 113–115]. Studies also show that the financial impact of some trials can 
adversely affect patient adherence as well as retention [116, 117]. Sometimes 
patients are not presented with a clear rationale for why their participation is impor-
tant and receive minimal feedback. Education may also help patients feel more 
inclined to participate in clinical research [118]. Encouraging patient trust in the 
clinical trial process may be expected to lead to better participation [119]. Ineffective 
scheduling and waiting time have been associated negatively with patient satisfac-
tion [120, 121]. Sources of stress such as those associated with long waiting time 
[122] or being on-site without reciprocal empathy would be intuitively associated 
with lower retention [123].

Informed consent is often lengthy with complex language and concepts and is 
often not understood by patients [123–127]. Scientific literacy in the general popu-
lation can be limited, leading to difficulty understanding information associated 
with a clinical trial [128, 129]. Individual site informed consent processes vary, with 
research showing that more interactive processes involving videos, questions and 
answers, and more human interaction can result in greater understanding and 
improve patient satisfaction [130–133].

Decreased retention may underpower a trial. This may prompt a sponsor to adapt 
by expanding the number of sites (costly protocol amendments and delays), increas-
ing the allocated funds to meet minimum enrollment or even close the trial. By 
consequence this sometimes necessitates eliminating certain planned tests in order 
to reallocate available funds. In turn, certain endpoints may have an insufficient 
sample size to detect an important result [83]. This in turn, affects the trial ethics as 
patients know that their results will not be likely to contribute to a statistically sig-
nificant outcome [134, 135].
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19.2  Types of Clinical Trial Design

In oncology, patients are generally classified by their primary cancer and stage, and 
randomized controlled trials are conducted to create standard therapies. Historically, 
cytotoxic agents have been developed based on this perspective. However, research 
and development in the past two decades enabled cancer cell growth and progres-
sion to be defined at cellular and molecular levels, and the presence or absence of 
molecular markers or genetic mutations enabled detailed classification of particular 
tumor types into several subtypes. Similarly, there were developments in the chemo-
therapeutic drugs, shifting from treatments centered on cytotoxic agents to those 
using molecularly targeted agents, which act selectively on cancer cells. Recently, 
there is active research on immune checkpoint inhibitors [136], molecularly tar-
geted agents that target specific molecular markers such as EGFR gene mutation- 
positive inoperable, recurrent, or metastatic non-small cell lung cancer [137], as 
well as ALK fusion gene-positive non-small cell lung cancer [138].

With the aforementioned changes, biomarker-based clinical trial designs started 
to rise in popularity over the past two decades. Trials based on biomarker-strategy 
design such as ERCC1 [139] entailed randomly assigning patients to an experimen-
tal treatment arm that uses the biomarker to determine therapy versus standard ther-
apy or to a control arm that uses standard therapy. Trial designs such as “enrichment 
designs” or “targeted designs” included patient population with a single molecular 
marker for which a drug’s effects can be expected in a specific tumor type. The 
biomarker is evaluated on all patients, but random assignment is restricted to patients 
with specific biomarker values. The established molecular marker could be evalu-
ated with a diagnostic tool and would have a strongly correlation with the efficacy 
of the investigational drug. Additionally, in marker-negative cases, the drug is 
expected to have no efficacy from a biologic standpoint. Examples include clinical 
trials involving trastuzumab [140, 141] and CALGB 10603 [142]. If the molecular 
marker is not established as a reliable marker, the use of a marker-stratified design 
may be considered. In this design, patients were assigned to arms by molecular 
marker positivity or negativity and were randomized within each arm. Clinical trials 
that used the marker-stratified design include the INTEREST [143] and MARVEL 
[144, 145] trials. After this type of design was introduced, sequential subgroup- 
specific, marker sequential test (MaST) and fallback designs were proposed as 
extensions of the marker-stratified design [146]; this eventually led to the proposal 
of clinical trials that use the master protocol design.

With the advent of next-generation sequencing and comprehensive genomic pro-
filing in oncology, there has been significant enthusiasm to pursue the concept of 
personalized or precision medicine with an aim to use tailored therapies to target 
specific genetic changes that cause the tumor to develop [147]. However, it is unre-
alistic to conduct phase I–III trials with adequate power according to each sub- 
population based on patient molecular subtypes [148–152]. Common protocols that 
assess the combination of several molecular markers and their targeted therapies by 
means of multiple sub-studies for single and/or multiple tumor types are required. 
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These protocols are called “master protocols,” and are drawing attention as a next- 
generation clinical trial design.

A master protocol is a comprehensive protocol created for evaluating multiple 
hypotheses of sub-studies that are concurrently conducted. It comprises of different 
sub-protocols of multiple concurrently operating sub-studies (Fig. 19.2), where the 
sub-studies are commonly conducted on populations based on specific tumor types, 
histologic types, and/or molecular markers. Master protocol trials can be explor-
atory or confirmatory. Exploratory master protocol trials are often composed of 
multiple single-arm sub-studies, and confirmatory master protocol trials are com-
posed of multiple randomized sub-studies. For either trial type, the design and sta-
tistical considerations are commonly standardized between all sub-studies 
[153–155].

A master protocol trial uses a common centralized system for patient selection, 
logistics, templates, and data management. In order to collect standardized data, 
histologic and hematologic specimens of enrolled patients are measured and ana-
lyzed using a common basic system (e.g., next-generating sequencing and immuno-
histochemistry) to collect coherent molecular marker data. Patients can participate 
in sub-studies for which they meet eligibility criteria based on their molecular 
marker data. Thus, enrolling in a master protocol trial increases the chance of trial 
participation for which the patients can expect optimal therapeutic effects. 
Importantly, even if there are no sub-studies that a given patient can participate in, 
they will be followed-up, and can be placed on a waiting list until an appropriate 
sub-study is started. Furthermore, natural history data from a waiting list can be 
used as controls in evaluating the efficacy of an investigational drug in a single-arm 
sub-study [151]. On the other hand, the challenges associated with master protocol 
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Biomarker Profiling

Sub-study 1
(Intervention 1)

Sub-study 2
(Intervention 2)

Sub-study 3
(Intervention 3)

Design 1 Design 2 Design 3

Registration and Specimen
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Biomarker 3

Fig. 19.2 Master protocol schema
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trials, include the fact that several small sub-studies are being conducted in parallel, 
which may increase the rate of false positive findings.

A master protocol can alleviate some of the modern era challenges faced by 
clinical trials [152, 156]. First, classic trial design paradigms are challenged by 
inter-patient and intra-patient heterogeneity, as they are unable to test targeted thera-
peutics against low frequency genomic “oncogenic driver” aberrations with ade-
quate power. These low frequencies of any given molecular driver further exacerbate 
clinical trial accrual difficulties. Identical tumor types can exhibit different responses 
to treatments depending on patient characteristics or disease stage. Even within the 
same patient, intratumor heterogeneity or variations in stromal tissue can generate a 
different treatment response [157, 158]. A master protocol enables efficient enroll-
ment of rare fraction patients so that centralized patient management, based on a 
common protocol, promotes the acceleration of clinical development and trial data 
from multiple sub-studies can be comprehensively used to evaluate inter- and intra- 
patient heterogeneity. Second, findings on specific signal pathways strongly associ-
ated with driver gene mutations (oncogene driver and oncogene addiction) and 
cancer cell growth and progression can be obtained [159–161]. Third, combining 
two or more targeted therapies makes it possible to expand the genetic mutations 
being studied [153, 162, 163].

A master protocol trial is often classified into basket, umbrella, and platform tri-
als based on characteristics of the study population (e.g., disease, histologic type, 
molecular marker) and on both the type and number of study therapies (Table 19.1, 
Fig. 19.3). The trial definitions are not standardized and have some overlap [151, 
152, 156, 164–166].

Basket trial in oncology are often conducted as single-arm, phase II, usually non- 
randomized trials with the purpose of evaluating proof-of-concept (POC) in an early 
stage of development. It examines the therapeutic effects of molecularly targeted 
agents for several tumor types that may have a common single molecular marker, or 
genetic mutation, by tumor type and/or across tumor types. Each arm is a separate 
“basket” that assigns small cohorts of patients and focuses on testing one treatment 
against a specific target, regardless of cancer types [152]. The term “basket” refers 
to the fusion of potentially different cancers (according to the common classifica-
tion by the body organ where they begin [166] or by their histological type of origin 
[167, 168] into one similar disease at the molecular level. The absence of a control 
group is a limitation in evaluating therapeutic effect; thus, it is desired to collect 
control data. An example of a basket trial is phase II NCI-MATCH (Molecular 
Analysis for Therapy Choice, NCT02465060) trial launched in 2015 by the US 
National Cancer Institute [169].

Table 19.1 Types of master protocol trials

Trial type Definition
Basket Evaluates one targeted therapy on multiple diseases or multiple disease subtypes
Umbrella Evaluate multiple targeted therapies for one disease or several diseases
Platform Evaluate several targeted therapies for one disease perpetually, and further accept 

additions or exclusions of new therapies or patient populations during the trial
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Basket trials are characterized by the comprehensive execution of single-arm tri-
als with a small number of patients, which enables efficient patient enrollment for 
rare cancers or rare fractions. Generally, the number of participants in individual 
sub-studies are between 20 and 50, and hypotheses that can demonstrate statistical 
significance are made only when there is major therapeutic efficacy; therefore, a 
basket trial is considered a “signal-finding” trial. For sub-study designs, two-stage 
or multistage designs may be used [156].
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Notably, basket trials are assumed to allow a fairly accurate prediction of whether 
a tumor with particular molecular characteristics will respond to a targeted therapy; 
furthermore, such response to a targeted therapy is established irrespective of the 
histologic type of the tumor. A number of studies have attempted to evaluate the 
general policy of using tumor genomics to select treatments for individual patients. 
Two meta-analyses of non-randomized phase II basket studies concluded that trials 
with a “personalized” strategy resulted in a higher proportion of patients achieving 
responses and longer PFS and overall survivals [170, 171]. The SHIVA result high-
lights the fact that using tumor genomics to guide therapy is not always useful [172]. 
Ignoring the possibility that activity of the drug can depend on the histology of the 
tumor as well as the genomic alteration can have implications as suggested by 
vemurafenib trial for patients harboring V600E BRAF mutation and the drug was 
active in NSCLC and several other histologies, but not in colorectal cancer [173]. 
Consequently, in designing basket trials, great care must be taken in defining the 
genomic alterations to be included and the matching strategy to be used [174, 175].

In order to counter the aforementioned issue, a drug regimen can be evaluated 
separately for each histology or each histology group by increasing the sample size 
to conduct a separate two-stage phase II design for each histology. However, this 
can become inefficient if the drug is found to be active or inactive in all the histol-
ogy groups. A suggested approach that improves efficiency is the parallel evaluation 
of each histology by assessing the homogeneity of the response rates for the histol-
ogy groups during an interim analysis. If the response rates seem heterogeneous, 
then a two-stage phase II design is conducted separately for each histology. If the 
response rates seem homogeneous, then a single two-stage phase II design is con-
ducted with the histologies pooled [164].

Basket trials often explore a range of potential off-label uses for a drug approved 
in one histology for patients with a genomic abnormality. For some of these rare 
histologies, the response rate may be sufficiently large that if the responses are 
durable the evidence from the basket trial may be sufficient for extension of the 
approved indication. A suggested approach involves pooling the rare histologies 
that are found sensitive to the drug in the basket trial in a phase III licensing trial in 
which the test drug is randomized against best available treatment controls. This 
would allow extending indications to several rare histologies simultaneously [176].

Patients enrolled in each sub-study in a basket trial are often composed of a het-
erogeneous group in terms of tumor type, histologic type or patient characteristics. 
Therefore, as it is difficult to evaluate time-to-event endpoints (e.g., progression- 
free survival or overall survival). Thus, primary endpoints are often response rates, 
which are less sensitive to the effects of population heterogeneity [176].

Umbrella trials in oncology evaluate multiple targeted therapies that correspond 
to different molecular markers or genetic mutations within a particular tumor type 
[166]. Sub-studies may be single arm, phase II, or phase II/III trials that are random-
ized and compared to placebo or a standard therapy. The term “umbrella” refers to 
separation of one alleged cancer into many sub-cancers depending on their molecu-
lar features. There is also a “default arm” which assigns patients without a specific 
marker to receive standard treatment. Umbrella trials have in common a system that 
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unifies molecular profiles of patient specimens for evaluation. An example of an 
ongoing trial is Lung-MAP: S1400 Phase II/III Biomarker-Driven Master Protocol 
for Second Line Therapy of Squamous Cell Lung Cancer (NCT02154490) study 
sponsored by Southwest Oncology Group (SWOG) [177].

While basket trials are generally single-arm sub-studies that are exploratory in 
nature, umbrella trials are often single-arm or randomized sub-studies that are con-
firmatory. Therefore, a randomized sub-study with appropriate eligibility criteria by 
tumor type and/or stage can generate confirmatory evidence related to the targeted 
therapy for the tumor type under study. Sometimes, patient enrollment may be 
slowed in the case of compartmentalization by molecular markers for examining 
rare cancers or rare fractions. In addition, umbrella trials are normally large-scale 
and long-term master protocol trials, but when the standard therapy changes during 
that period, the clinical significance of comparing to a control group of patients 
undergoing standard therapy is lost [148, 163].

Platform trials evaluate several targeted therapies for one disease perpetually, 
and further accept additions or exclusions of new therapies or patient populations 
during the trial. Basket and umbrella trials could also be considered platform trials, 
if they permit the addition or exclusion of new treatments during the trial. In a plat-
form trial, interim analyses evaluate the efficacy or futility of each targeted therapy, 
and their results are used to exclude certain targeted therapies or to add new ones. 
Futility is often evaluated by the Bayesian method [154, 178]. Since sub-studies by 
molecular markers are not mutually independent trials, the efficacy of the targeted 
therapy of each sub-study can be estimated by a Bayesian hierarchical model [152, 
154, 178]. As such, platform trials permit relatively flexible addition or exclusion of 
treatment methods or patient populations, thereby enabling an efficient transition to 
a confirmatory trial. Examples include BATTLE trials in NSCLC [179, 180] and 
I-SPY II trial in breast cancer [181, 182]. Challenges of the platform trial include its 
large-scale, long-term nature, associated high costs of management and execution 
of the trial, and the need to build organizations or frameworks that can operate these 
trials perpetually. Platform trials also run the risks of bias and prognostic imbal-
ances as a result of adaptive randomization. Consequently, apparently positive find-
ings from these analyses should not be accepted as correct until confirmed by an 
independent phase III trial.

In recent years, there have been drugs for which efficacy was not observed in a 
broad study population, but they did demonstrate marked efficacy in specific 
patients. These patients are called “exceptional responders” [183], and new initia-
tives are in place to elucidate their molecular profiles. Master protocol trials can also 
be used to identify exceptional responders and are anticipated to become one of the 
standard clinical trial designs to promote individualized medical care.

Although the benefit, in terms of time and resources, of using a master protocol, 
cannot be denied, it come at the cost of increased up-front planning and coordina-
tion to bring a larger number of parties into agreement on trial design, execution, 
and governance than a stand-alone trial requires. The complexity and real-time 
decision-making further result in the need for more up-front planning. The need for 
coordination amongst multiple stakeholder, appropriate infrastructure, and complex 
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trial design elements can extend the start-up time for a master protocol consider-
ably, as compared with that for a single-purpose trial.

With the approval of new interventions, the master protocol should allow for 
coordinated design adjustments. Usually, single-purpose trials tend to adapt better 
to it. The adaptations might result in the need for a temporary halt in recruitment, 
statistical design modifications to accommodate changing comparators, or ethical 
issues related to patient’s perception of being on an inferior arm [151].

While designing these trials, it is important to consider any associated ethical 
issues [184]. The scientific validity is vital for an ethically sound study. Focusing 
only on molecular therapy targeting single mutation without considering the com-
plexity of tumor biology or heterogeneity, may introduce bias. Due to the innovative 
trial designs, patients with rare malignancies have the opportunity to be enrolled 
and benefit from the trial, but due to insufficient accrual, the trial may generate clini-
cally insignificant findings [184]. Inadequate sample size in study arms and the use 
of surrogate endpoints may result in an approval of an intervention without con-
firmed efficacy [185]. Hence, analysis methods should be aligned with the research 
objectives during the planning stage to minimize the chances of coming to an erro-
neous conclusion. Moreover, complexity, limited quality and availability of tumor 
samples may not only cause bias and unreliability, but also can potentially harm 
patients by assigning them to an inappropriate therapy arm. Other threats include 
publication bias and lack of explanation for a protocol modification [165].

An ethical requirement of conducting clinical trials is a favorable risk–benefit 
ratio based on non-maleficence and beneficence and serves to protect the partici-
pants against exploitation [184]. Novel clinical trials can gain important knowledge, 
which can be used in future trials to develop effective therapies. However, they offer 
limited direct benefits to patients. The excessive use of phrases like “personalized 
medicine” or “precision oncology” as opposed to “genome-based therapy” during 
informed consent can result in misleading information or therapeutic misconcep-
tion. This can falsely indicate that the trial’s goal is to provide personalized care 
with regard to the patient’s best interest and direct therapeutic benefit rather than 
gathering data for contributing to scientific knowledge [165]. All potential partici-
pants must wait about 2 weeks for the results of the genetic screening, which may 
be stressful and produce anxiety. Moreover, surrogate endpoints do not necessarily 
translate to patient-centered outcomes [185, 186]. The enrollment of patients whose 
tumors harbor multiple mutations in treatments matching a single mutation may be 
controversial from an ethical standpoint [165]. Moreover, the recruitment of thou-
sands of participants generates a huge amount of data that must not only be rapidly 
processed, but also reliably and safely stored, so that undesirable people have no 
access to it [165].

19.2.1  Adaptive Clinical Trials

The size and expense of phase III clinical trials in modern oncology continue to 
increase, but the success rate remains unacceptably low—only 34% of phase III 
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oncology drug trials with results announced from 2003 to 2010 achieved statistical 
significance in their primary end points [187]. The challenges associated with the 
modern era demand appropriate adaptation.

An adaptive design is one in which the accumulating data are used to modify the 
trial’s course. Adaptive designs are ideal for addressing many questions at once. For 
instance, a single trial might identify the appropriate patient population, dose and 
regimen, and therapeutic combinations, and then switch seamlessly into a phase II/
III confirmatory trial. Adaptive designs rely on information, including from patients 
who have not achieved the trial’s primary end point. Longitudinal models of bio-
markers (serum, molecular and imaging based) can be adaptively validated for long- 
term primary end point prediction. Adaptive trial designs can make development 
more informative by addressing whether a drug is safe and effective while showing 
how it should be delivered and to whom and shorten the duration of the develop-
ment [188]. Examples of adaptive clinical trials include BATTLE-2, I-SPY 2 and 
FOCUS4 [189–191].

Both the Bayesian perspective and the more-traditional frequentist perspective 
can be used in statistical design of adaptive clinical trials. The Bayesian perspective 
facilitates building an efficient and accurate trial, including using longitudinal infor-
mation adaptively. To take advantage of this attribute, researchers who favor the 
frequentist approach can build an adaptive design using the Bayesian perspective 
and then find its frequentist operating characteristics using computer simulations 
and then playing with the design to achieve more-desirable operating characteristics 
[192–196].

Predictive probability calculations based on interim monitoring can be used as 
part of an adaptive design and can indicate the superiority or futility of a treatment 
arm [144, 145, 197–199]. CALGB 49907 is an example of a trial that used predic-
tive probability to adapt sample size [200]. Once interim monitoring commences, 
there is very little cost in having frequent monitoring from then on [201], so one can 
analyze the data more often and stop earlier (when appropriate). It accelerates pub-
lic dissemination of important study results and protects patients on trials from inef-
fective treatments. Adaptive design allows for seamless phase I–II and phase II–III 
trials, increasing the overall efficiency of the process [202]. An application of 
interim monitoring is in the use of phase II/III designs, which can be very fast and 
effective (especially in the setting of multiple experimental treatments and a reliable 
intermediate end point) but do have the cost of having to commit earlier to the phase 
III question than if separate phase II and phase III trials were performed and loss of 
flexibility of being able to modify the phase III trial design based on the results of 
the phase II trial [203, 204].

The logistics of adaptive planning can be more expensive than traditional trials 
due to inherent complicated design [205]. The crucial outcome data that drive the 
adaptive aspects of the design must be deposited into a central database while 
patients are being accrued and followed. The increased use of real-time electronic 
data entry, processing, and analysis should allow for more frequent interim analy-
ses, leading to quicker decisions. This database must be connected to the software 
that determines treatment assignments or other adaptive aspects of the trial. Adaptive 
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methods that require complex statistical modeling that is neither transparent nor 
reproducible should be avoided. The adaptive elements of stopping treatment arms 
based on unfavorable or very favorable interim monitoring results and adding treat-
ment arms when they become relevant further increase the efficiency of the master 
protocol trial design. With adaptive planning, the aim is to improve on our gold 
standard randomized controlled trials in the modern oncology era.

19.3  Artificial Intelligence and Clinical Trial Design

19.3.1  Need for Artificial Intelligence in Clinical Trial Design

It is recognized that the success rate of clinical trials is low. An analysis of clinical 
trial data from January 2000 up to April 2019 estimated that less than 12% of drug- 
development programs ended in success [206]. As described earlier, majority of the 
failures of clinical trials can be traced back to lack of efficacy or safety of an inter-
vention, flawed study design, lack of funds, retention or recruitment issues. In order 
to improve the success rate of clinical trial in the modern era of personalized medi-
cine, it is imperative to understand the traditional barriers as well as the ones arising 
due to design innovations. Nonetheless, interventions to overcome these barriers is 
key to a successful and meaningful trial outcome.

The recruitment process is often the biggest barrier in clinical research and can 
be time-consuming and expensive. According to a 2016 study, 18% of cancer trials 
that launched between 2000 and 2011 as part of the US National Cancer Institute’s 
National Clinical Trials Network failed to find even half the number of patients they 
were seeking after 3 or more years of trying, or had closed entirely after signing up 
only a few volunteers [69]. Haddad et al. found an estimated 20% of people with 
cancer are eligible to participate in such trials, but fewer than 5% do [207].

Every clinical trial poses individual requirements on participating patients with 
regards to availability (trial is available to a patient 44% of the time), eligibility 
(27% patients are eligible), physician motivation (70% of the patients will be asked 
to participate), and empowerment to enroll (8% of the patients will enroll) [3]. 
Eligible and suitable patients might not be properly incentivized to participate, and, 
even if they are, they might not be aware of a matching trial or find the recruitment 
process too complex and cumbersome to navigate. Moving enough patients under 
these tight recruitment timelines constitutes a major challenge and is in fact the 
number one cause for trial delays: 86% of all trials do not meet enrolment timelines, 
and close to one-third of all Phase III trials fail owing to enrolment problems [208]. 
This illustrates one of the most severe shortcomings of state-of-the-art clinical trial 
design: those trials with the highest patient demand suffer most from inefficient 
patient recruitment techniques.

A concept important to grasp is that clinical trials are usually not designed to 
demonstrate the effectiveness of a treatment in a random sample of the general 
population, but instead aim to prospectively select a subset of the population in 
which the effect of the intervention, if there is one, can more readily be 
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demonstrated. In such trial enrichment designs, inclusion of unsuitable patients will 
automatically decrease the observed efficacy of the drug being tested. Recruiting a 
high number of suitable patients does not guarantee success of a trial, but enrolling 
unsuitable patients increases the likelihood of its failure.

Another fundamental concept to increase the generalizability of a trial is to 
ensure diversity in the trial participants. In 2014, 86% of clinical trial participants 
worldwide were white people [209]. And a 2019 study found that 79% of genomic 
data comes from people of European descent [210], even though they only comprise 
16% of the world’s population.

Patients are often encouraged to search for a trial themselves. Typically, people 
rely on their doctors to inform them about suitable studies. Some patients search the 
website ClinicalTrials.gov, which lists more than 300,000 studies that are being 
conducted in the United States and 209 other countries. The complexity of trial 
eligibility criteria in terms of number and use of highly technical terms generally 
makes it intimidating for a patient. Patients often find it challenging to comprehend 
and assess their own eligibility. Manually extracting meaningful information from 
this large and unstructured data-source is a significant task that imposes a heavy 
processing burden on doctors and patients alike.

With the increasing generation and availability of medical big data to researchers 
including electronic health records, “omics” and wearables devices, it is difficult for 
oncologists to process all the available information that could influence outcome 
prediction and decision-making with traditional analytics. Success in clinical trials 
is going to become increasingly reliant on sophisticated machine learning (ML) 
algorithms to handle big data dependent predictive analytics and precision medi-
cine. These algorithms have the potential to save billions of dollars, speed up medi-
cal advances and expand access to experimental treatments. AI- and ML-driven 
systems can help to improve patient cohort composition and provide assistance with 
patient recruitment.

Moving beyond patient cohort selection and recruitment, other important factors 
are a lack of technical infrastructure to cope with the complexity of running a trial. 
It is imperative that patients stay in the trial, adhere to trial procedures and rules 
throughout the trial, and that all data-points for monitoring the impact of the tested 
intervention are collected efficiently and reliably. Only 15% of clinical trials do not 
experience patient dropout, and the average dropout rate across clinical trials is 
30%. A linear increase of the non-adherence rate in a trial leads to an exponential 
increase in additional patients required to maintain the statistical power of the out-
comes [208]. These additional recruiting efforts lead to trial delays and substantial 
additional costs. For example, a study in which 20% of the patients are non- adherent 
means an additional 50% of patients need to be recruited. Similarly, 50% non- 
adherence rate leads to an increase in recruitment of an additional 200% of patient.

Improved patient monitoring and coaching methods during ongoing trials can be 
used to lower the adherence burden, make data point detection more efficient, and 
thus reduce dropout and non-adherence rates. To comply with adherence criteria, 
patients are required to keep detailed records of their medication intake and of a 
variety of other data-points related to their bodily functions, response to medication, 
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and daily protocols. This can be an overwhelming and cumbersome task, leading to 
on average 40% of patients becoming non-adherent after 150 days into a clinical 
trial [211].

Every clinical trial follows a protocol that describes its design in detail. This 
protocol involves tremendous resources including prior studies, and regulatory 
information. Any problems that arise during the trial and that require amendments 
to the protocol can lead to months of delays and add hundreds of thousands of dol-
lars to the cost. A faster speed in designing a trial, writing and protocol and subse-
quent amendments can be achieved by the use of artificial intelligence.

The incredible need for AI to overcome the aforementioned issues is indisputable 
in the world of clinical trials. With many fields under its umbrella, AI is poised to 
overcome not only the historical roadblocks but also the challenges posed by the 
continuous medical innovations.

19.3.2  The Multiple Roles of Artificial Intelligence (AI) in Clinical 
Trial Design

The term “artificial intelligence” (AI) was coined by John McCarthy and colleagues 
at the Dartmouth Summer Research Project (Dartmouth College, Hanover, 1956) 
[212]. The use of AI in medicine dates back to the early 1970s when expert systems 
such as MYCIN were first introduced to provide rule-based diagnostic decision sup-
port [213]. However, several radiological applications in medical imaging preceded 
MYCIN [212]. Early medical AI systems relied heavily on medical domain experts 
to train computers by encoding clinical knowledge as logic rules for specific clinical 
scenarios. This not only made the system labor-intensive and time-consuming but 
also less flexible and more difficult to update [214]. More advanced ML systems 
that are capable of training themselves to learn these rules by identifying and weigh-
ing relevant features from data such as unstructured text, medical images, and EHRs 
emerged in the 1990s and 2000s, but were relatively slow to be adopted by the clini-
cians, largely because of the lack of widely available data and the fact that the early 
methods required intense feature-engineering efforts involving serious commit-
ments from medical domain experts [215].

Several factors have changed this situation dramatically. The field of AI has seen 
multiple transformations recently, enabled by hardware improvements and avail-
ability of very large training datasets [216, 217]. Medical data in digital form is now 
widely available due to technological advancement. Public policy efforts such as the 
Public Health Monitoring and Promoting Interoperability System that strive to 
achieve a critical national goal of meaningful use of interoperable electronic health 
records throughout the United States healthcare delivery system will further con-
tribute to enhance the use of AI [218].

Recent years have witnessed a surge in efforts as well as early proof-of-concept 
successes of AI in medicine, starting from medical imaging including clinical pho-
tographs, digital pathology, radiographic images [217, 219–227] to AI in clinical 
outcome prediction [228–237] to AI in translational oncology [238–244] and AI in 
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clinical decision-making [245–247]. AI techniques have advanced to a level of 
maturity that allows them to be employed under real-life conditions to assist human 
decision-makers.

The time is ripe for AI to contribute to clinical trials with a great potential to 
transform key steps of clinical trial design from study preparation to execution 
toward improving trial success rates, with a positive impact on not only time and 
money but also optimizing and advancing the medical and patient care.

Performing a requisite literature review for related studies remains a labor- 
intensive task requiring personnel with specific knowledge who can interpret the 
framework, criteria, and results of prior clinical trials. AI can help to overcome 
these shortcomings of current clinical trial design. ML, and particularly deep learn-
ing (DL) with its convoluted neural networks (CNNs) are able to automatically find 
patterns of meaning in large datasets such as text, speech, or images. Other AI 
branches, such as natural language processing (NLP) can understand and correlate 
content in written or spoken language such as searching through biomedical litera-
ture [248], human–machine interfaces (HMIs) allow information exchange between 
computers and humans and reasoning techniques convert the content into actionable 
recommendations for the human decision-maker [249]. These capabilities can be 
used for correlating large and diverse datasets such as electronic health records 
(EHRs), medical literature, and trial databases for enhanced trial designs.

Every clinical trial follows a detailed protocol that describes exactly how the 
study will be run. Any problems that arise during the trial and that require amend-
ments to the protocol can lead to months of delays and add hundreds of thousands 
of dollars to the cost. AI can support a faster and more efficient process for a needed 
amendment as well as protocol development. A study designer must think through 
the implications of different inclusion/exclusion criteria (as well as objectives and 
endpoints) and the effects they will have on recruitment, enrollment, retention, and 
ultimately time and cost to completion [250–253]. The budget of a trial is limited, 
and therefore various trade-offs need to be considered, including not only the speed 
of enrollment, but the likelihood of meeting the enrollment goal. By choosing a 
cheaper but less expensive and more remote study center, cost can be lowered at the 
expense of slow recruitment. This may necessitate spending more on additional 
study centers, which come with additional costs of evaluating, training, protocol 
amendments, and trial execution. Quantifying these trade-offs can assist with mak-
ing better decisions.

Fundamental to a trial design are the concepts related to perfect cohort composi-
tion, effective patient recruitment, and efficient patient monitoring. These are 
dependent on patient-related features such suitability, eligibility, decision-making 
power, and motivation, as well as trial features including datapoint monitoring, end-
point detection, compliance, and patient retention. Clinical trial enrichment and bio-
marker verification helps to reduce population heterogeneity by electronic 
phenotyping and improves prognostic and predictive enrichment. This augments the 
suitability of patients for the trial. Clinical trial matching is aided by automatic eli-
gibility assessment, simplified trial description and automatic trial recommenda-
tion. Automatic event logging, encouraging compliance and datapoint monitoring, 
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promotes the use of a record keeping disease and study protocol diary. To improve 
patient retention, dropouts can be forecasted and interventions such as patient 
coaching are implemented to prevent it [254].

The above functionalities are enabled through individual combinations of the 
three main AI technologies: machine/deep learning, reasoning, and HMI, which ana-
lyzes specific sets of data sources such as electronic records (EMR), omics, internet 
of things (IoT), wearables, clinical trial databases, trial announcements, social media, 
medical literature, speech and video. Collectively, the AI is expected to improve the 
study outcomes related to optimized cohort composition, improved trial efficiency 
and success probability, decreased cost, increased retention and compliance.

In order to decrease the cost, while still aiming to optimize a clinical trial patient 
cohort composition, a realistic approach in the absence of a comprehensive omics 
and list of biomarkers, is to apply complex analytic methods to combine -omic data 
with EMR and other patient data, present in different location and in variable for-
mats, to develop efficiently measured biomarkers reflective of meaningful end-
points. Branches of AI such as NLP and computer vision algorithms such as optical 
character recognition (OCR) can serve to automate the reading and accumulation of 
this evidence. With the use of prognostic and predictive features of AI including 
ML, DL and reasoning, a more extensive but still applicable discovery of correla-
tions desired for optimization of clinical trials has been reported [255].

A wide variety of ML methods have recently shown substantial improvement in 
handling complex real-world situations to assist in electronic phenotyping and thus 
reducing population heterogeneity [256]. ML methods, including computational 
modeling, can be employed to improve the prognostic and predictive enrichment of 
patients in clinical trials, as evidenced by their growing utility in approximating key 
biomarkers [257, 258] and application in model-based clinical trial designs based 
on complex disease processes [259–261]. The overall productivity of oncology tri-
als as measured by the success rates relative to trial complexity and duration, can be 
improved by 104% and 71% by the availability of pools of pre-screened patients 
and biomarker tests, respectively, by 2023 [262].

Several AI techniques can assist with clinical trial matching by automatically 
assessing the patient’s eligibility, making trial recommendations and allowing the 
recruiting site to be cognizant of the patient. NLP [46, 263], reasoning techniques 
and ML/DL permit the systems to learn and improve on the quality of their analytic 
output based on an adapted underlying algorithm [216, 249]. AI-based clinical trial 
matching systems can perform an automatic analysis of EMR and clinical trial data-
bases to find matches between specific patients and recruiting trials [263]. 
Additionally, NLP and OCR can mine publicly available online content such as, 
trial announcements and social media to automatically identify potential patient 
matches with relevant trials. Technology, such as patient matching/eligibility algo-
rithms built into electronic medical record systems, has the potential to reduce the 
human workload associated with identifying eligible patient [264–266] but even 
with technology, staff time is required to find and enroll patients in clinical trials.

Patients can be provided with AI tools to ease the complexity associated with the 
process of finding a trial. This motivates the patients, keeps them informed of 
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pertinent trials and allows involvement with clinicians for further assessment. Such 
digital enrollment with AI tools enables the casting of a wider net and results in sub-
stantial improvement in more diverse recruitment. Patients prefer simplified informed 
consent forms and testing showed no lower level of patient comprehension of the 
details of the clinical trial when using a simplified form [267]. Similarly, patient 
education leaflets should be easily understandable. AI tools can play a role in ensur-
ing that these items remain straightforward as well as transparent and at the appropri-
ate education grade level. AI-based sentiment analysis can play a role in developing 
patient materials to provide a more compassionate tone and evoke greater patient 
trust [268–270] in addition to maintaining an appropriate reading level.

An open-source web tool called Criteria2Query uses AI to convert the trial eligi-
bility criteria into standardized database query format that enabling researchers and 
clinicians to search databases without needing to know a database query language 
[271]. Software developed by Deep 6 AI, an AI-based trials recruitment company 
has also improvement in recruitment. Another open-source web tool, called DQueST 
helps the patients to make sense of eligibility criteria by reading trials on 
ClinicalTrials.gov and then generates plain-English questions such as “What is your 
BMI?” to assess users’ eligibility. An initial evaluation showed that after 50 ques-
tions, the tool could filter out 60–80% of trials that the user was not eligible for, with 
an accuracy of a little more than 60% [272]. A digital-health company, Antidote, has 
developed a tool that helps people to search for trials. Similarly, IBM’s Watson for 
Clinical Trial Matching system, in a pilot study, increased the average monthly 
enrolment for breast cancer trials by 80% [207]. Trials.ai, describes its AI tool as a 
data-driven guide to designing better trials protocols. It uses AI techniques to collect 
and analyze publicly available data as well as certain owned private data. The com-
pany’s software can then help determine how aspects of the customer’s proposed 
trial, such as the strictness of its eligibility criteria, might affect outcomes such as 
cost, length or participant retention.

With the rise of commercially available wearable sensors with medical-grade 
health-sensing capabilities and video monitoring as part of trial design, continuous 
real-time patient data can be automatically monitored, logged and reviewed. This 
decreases the burden on patients and serves to increase compliance. ML/DL models 
can then be used to analyze such data to identify relevant events and endpoints reliably 
and efficiently without manual patient initiated self-monitoring processes. DL algo-
rithms coupled with at the point of sensing, ultra-low-power consumption mobile pro-
cessors can be used for analyzing time-series data from wearable sensors [273, 274]. 
Wearables measuring biometric parameters using customized mobile processors and 
“cognitive sensing” DL models allow not only storage and transmission but also, 
analysis of information by filtering raw data in real-time to automatically log disease 
and outcome diaries, extracting actionable material, and providing patient with adap-
tive personalized feedback and support and thus ensuring compliance [275, 276].

With ML algorithms-based pattern recognition and segmentation techniques on 
medical images (from, e.g., retinal scans, pathology slides and body surfaces, bones 
and internal organs), faster diagnoses and tracking of disease progression [227, 
277–279] is enabled. This increases trial efficiency.
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Companies are developing ML models to predict which patients are at risk of 
dropping out of clinical trials to prevent threats to trial validity. ML algorithms 
based on continuous data monitoring may be used to assess patient behavior and 
presence/absence of adherence with the trial protocol and use the information to 
predict the risk of dropout for a specific patient. A timely intervention at the earliest 
warning signs for non-adherence can prompt the deployment of effective patient 
coaching techniques, coping mechanisms, trial approved modifications and reme-
dies for any toxicities before they lead to a dropout [280]. Notably, these wearables 
and associated AI tools tend to be highly disease specific. The combination of these 
wearables with DL algorithms on smartphone platforms opens the door for wide 
array of opportunities to be explored. A study found that use of advanced technology- 
enabled non-invasive diagnostic screening (TES) using low-cost smartphones and 
other point-of-care medical sensors versus conventional vital signs examination can 
synergistically support population stratification and personalized screening [281]. 
This can provide support by increasing the trial efficiency.

Continuous real-time monitoring of patients and disease progression will be fur-
ther permitted with advancement in healthcare-related Internet of things (IoT) 
[282]. It is imperative that such sensitive patient data and all the analysis resulting 
from it should be stored securely. With standardization and interoperability, the 
medical devices focusing on IoT can act as efficient cognitive sensors for a clinical 
trial. It is conceivable to see blockchain technology being used in this regard to 
provide secure immutable exchange of data.

During a trial follow up, artificial intelligence has the potential to reduce patient 
time investment regardless of constraints on study site location [283, 284]. In par-
ticular, evolutionary computer simulations algorithms can assign the most appropri-
ate study center for each prospective patient in a trial based on patient and study 
center availability [285]. There is also the opportunity to match staff with patients so 
that patients tend to see familiar faces at each visit or alter staff based on patient 
desires [286]. Scheduling software can search for opportunities to reschedule patients 
adaptively when openings develop, making the most efficient use of the clinical tri-
al’s time. Similarly, it can be used to minimize other conflicts that a patient may have.

AI and ML approaches have a great potential in improving adaptive trial designs 
such as basket, umbrella and platform. These tools can facilitate enrolling patients 
in a trial, using large datasets to profile them using omics or biomarkers and then 
using real-world data (RWD) for matching them to profile-dependent interventions. 
Additionally, EMR data, omics and RWD such as patient-reported concerns, can be 
explored with ML techniques to create a more complete picture for intervention and 
biomarker discovery.

In master protocols and adaptive design, an AI-based framework for making and 
implementing decisions about which treatments to study, which to discontinue, and 
which to advance for further study or for regulatory submission typically involves 
the development of statistical models and algorithms as well as procedures to ensure 
the rapid flow of information among the involved parties (e.g., steering committee, 
sponsors, and data monitoring committee). Information from RWD-based simula-
tions can be used to model the impact of different study eligibility criteria, the 
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timing of endpoint assessments, and study timelines. Medical product developers 
are using this to support and develop clinical trial designs and observational studies. 
Study site selection, eligible patient identification, and simulation of study control 
arms, with a potential for replacing the need to randomize a patient to a control arm 
in some scenarios, are some uses of RWD. ML algorithms can be employed to track 
patients longitudinally and identify clinically meaningful patterns from hospital 
EMR “data lakes”. With RWD and longitudinal tracking of patients, certain tradi-
tionally conducted late-phase trials could be reduced or eliminated altogether [287].

AI occupies a significant place in the design of clinical trials and can be used in 
numerous ways to promote efficient and thus, successful trial completion. With 
innovations in healthcare and technology, rise in big data and shift toward personal-
ized medicine, the likely role of AI will continue to expand and support advances in 
clinical research as summarized in Table 19.2.

Table 19.2 Opportunities for AI in clinical trials

Factor Opportunity Role for Artificial Intelligence
Poor study 
design

More complete review of 
literature, EMR, publicly 
available databases, 
social media

NLP and ML (structured and unstructured) of 
available literature, finding similar trials, trials 
addressing similar issues, or trials addressing 
different issues utilizing similar techniques, 
summarized for the study designer.

Appropriate outcomes/
endpoints

NLP and ML of available literature, showing 
endpoints/measures/biomarkers used in other 
similar studies.

Appropriate eligibility 
criteria

NLP and ML assessment of similar published trials 
to determine eligibility and suitability of inclusion 
and exclusion criteria.

Appropriate statistical 
analysis

ML of available literature, summarizing statistical 
methods and designating these methods with 
successful or failed outcomes.

Appropriate sample size NLP/ML/DL to predict sample size, estimate patient 
dropout rates and pre-trial simulation of critical 
sample size.

Reducing likelihood of 
amendments

ML/DL to present designer with pertinent 
information to consider and potential amendments.

Inconsistencies in 
protocol

NLP/ML use in tabular and modular format to 
check time and events schedule against text, as well 
as summary of changes for any amendments.

Optimal arms/
interventions for adaptive 
therapy

ML/DL to simulate the various scenarios with 
pertinent parameters. Assist in personalized 
treatment

Regulatory/ethics review ML to ensure regulatory and ethical compliance, 
especially with adaptive therapy and changes in 
marketplace

Poor site 
selection

Effective measurement of 
trade-offs for each site

ML/DL modeling to assess trade-offs: site history, 
staff support and experience, investigator 
enthusiasm, available population pool, patient 
burden and site-associated cost.

(continued)
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Table 19.2 (continued)

Factor Opportunity Role for Artificial Intelligence
Poor 
recruitment

Improved use of funds Maximize cost effectiveness by targeted 
communication to meet patient profile, including 
sentiment analysis.

Ensuring appropriate 
eligibility criteria

NLP/ML on prior publications to identify suitable 
and eligible criteria, and also criteria associated with 
other trial failures.

Optimizing cohort 
composition

ML/DL to search through EMR and omics 
databases to enrich patient cohort from prognostic 
and predictive standpoint

Facilitating locating 
eligible patients

Database coordination, prompting investigators and 
patients when appropriate trials are available for 
specific patients. Assist in trial matching.

Reducing dropouts NLP/ML to profile patients based on prior data on 
who is more likely to complete a trial, reducing 
dropouts, predicting patient burden

Informed consent NLP and ML for sentiment analysis and allow for 
easily understandable consent forms and 
information leaflets

Representative population ML to ensure adequate diversity including racial, 
ethnic, sexual and gender biases

Poor 
patient 
retention

Transport and time 
investment

Adaptive patient scheduling. Incorporate patient 
profiles to tailor site assignment/schedules to patient 
constraints where possible.

Financial burden Systematic review of all patient costs to identify 
opportunities to minimize impacts.

Safety Automated review of contraindicated prior and 
concomitant medications and procedures.

Increase likelihood of 
feeling respected

Sentiment analysis and other AI tools applied to all 
documents provided to patients. Training of 
interacting staff for personalized interactions.

Compliance and 
adherence

Real-time monitoring to ensure mild toxicities are 
being addressed and subtle struggles experienced by 
the patient in keeping up with trial requirements. 
Tailored messaging and coaching to at-risk 
participants to increase likelihood of retention.

Poor trial 
execution

Automating reporting of 
events

Automated prompting of events for patients and staff, 
more objective monitoring, decreased patient burden, 
detects adherence, prompts for required reporting, 
including protocol deviations and adverse events.

Preparing data and 
reporting for write-up

ML for cleaning data for periodic reporting.

Lack of general 
awareness

Situation awareness provided to investigator/study 
coordinator monitoring study progress, patient 
progress, indicating any adaptive interventions if 
needed.

Overall Multiple factor analysis 
to improve trade-offs 
based on budget and 
other constraints

Multicriteria AI-based decision-making to quantify 
trade-offs in order to achieve the implementation of 
a successful trial design.
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19.3.3  Challenges for Artificial Intelligence in Clinical Trial Design

Despite the significance of AI/ML to contribute and accelerate clinical research, it 
has not been widely adopted yet. The limited successes of AI have been attributed 
to multiple things. An important factor is insufficient time lapse from an earlier era 
of lack of relevant technologies and AI models that were not able to generalize to 
more complex and realistic medical data sets [288, 289].

The efficiency of every AI-based study design application is directly dependent 
on the quality and amount of data, and hence faces the same fundamental challenges 
of electronic medical record (EMR) data interoperability, data privacy, security and 
integrity. Data lakes specifically designed for research need to be created that can 
handle large clinical, pathologic, imaging, omics and therapy data sets. This, in turn, 
requires money for infrastructure and personnel such as data scientists [290].

Furthermore, the digitalization and accessibility of EMR data is a bug hurdle for 
AI algorithms. Lack of regulatory frameworks on standardization of data collection 
causes EMR formats to differ widely, to be incompatible with each other or not digi-
tal at all, and to reside in a decentralized ecosystem with multiple sources without 
established secure data exchange for AI analysis. Similarly, clinical trial matching 
is based on AI algorithms. Any added future functionality and improved perfor-
mance predominantly will depend on the quality and amount of data which are 
accessible for analytical model development and pilot study field validation work. 
Care must be taken to reduce overfitting of ML models as a result of class- imbalance 
in the training data.

Some AI processes such as NLP algorithms can be very beneficial for healthcare 
providers and researchers. However, they still require labor and time intensive man-
ual annotation of data. The text in clinical documents is often free flowing and 
unstructured, and valuable information might only be implicit, requiring some 
background knowledge or context to understand. Medical providers might refer to 
the same thing in different ways. An NLP algorithm can be trained to spot all such 
synonyms by exposure to sample medical records that have been annotated by 
researchers. The algorithm can then apply that knowledge to interpret unannotated 
records.

The majority of currently implemented AI approaches rely upon supervised 
learning techniques that are in turn dependent on large well annotated datasets 
[212]. Thus, clinicians and researchers face the daunting task of annotating these 
large data sets. The process of curation and annotation can be helped through min-
ing of record using natural language processing (NLP), semi- or weak-supervised 
learning to help reduce the number of cases that must be manually annotated.

In addition to curation of data, there is a need to rigorously curate or quality 
assurance (QA) of the data analytic pipelines developed to train, test and validate an 
AI/ML/DL algorithm. Changes in versions of software, hardware platforms and 
open-source libraries can all affect the reproducibility and predicted output. The 
lack of a shared framework, standardization and interoperability for evaluating AI 
tools is an issue. Due to copyright issues, it is often difficult to compare and assess 
such technologies in a standardized way. Many AI approaches related to trial design 
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criteria, assessment of trial efficiency, searching through literature and databases, 
patient matching, and outcome monitoring are not standardized and interoperable 
and thus, cannot be systematically validated.

With the rise of wearables and Internet of things (IoT), medical-grade devices 
with advanced analytics capabilities for continuous real-time monitoring of patients, 
disease progression and cognitive sensing, will continue to grow [282]. There is 
valid emphasis on much needed standardization and interoperability protocols, 
while at the same time, promoting sensitive data exchange with appropriate integ-
rity and security. Blockchain technology could potentially be an answer for secure, 
immutable data transfers. Furthermore, a collaboration of regulatory, academic, 
medical, and industrial institutions, have started to produce standardization frame-
works and best practice recommendations for incorporating wearable technology 
into clinical trial design.

During these early days of implementing AI testing and adoption, the explain-
ability of AI models or how the classifier reached its conclusion is of utmost impor-
tance, particularly, if the conclusion is discrepant with the physician’s own opinion. 
Unfortunately, many DL algorithms suffer from the black box stigma [291]. Several 
approaches ranging from proxy models, attention maps, disentangled representation 
or learning with known operators have been surfacing to address the issue of unin-
terpretable AI paradigm [292–296]. There is a need for developing new tools to 
quantify uncertainties [297] to understand feature attributions [298] or to investigate 
model’s behavior.

In both EMR mining and clinical trial matching, the legal aspects of data privacy 
and security as well as a sufficient degree of transparency of AI models need to be 
addressed to ensure that AI-based systems are operable, ethical and have regulatory 
approvals.

Furthermore, data provenance and governance policies that address concerns of 
institutional review boards and the broader ethical issues around the use of large 
patient data sets for research and sharing of large amounts of data with for profit 
companies also need to be developed. There is a lack of guidance from a legal per-
spective surrounding physician liability and medical AI use. New guidelines on 
assigning liability for injuries that may arise from interaction between algorithms 
and practitioners (including appropriate use of the AI system by the human) is 
needed [299, 300].

19.3.4  Example Application of Artificial Intelligence in Trial 
Design (SMART)

The management of a chronic health disorder can be optimized through a sequen-
tial, individualized approach whereby treatment is adapted and readapted over time 
in response to the specific needs and evolving status of the individual [301]. A high 
level of individual heterogeneity in response to treatment exists in the world of 
oncology. This necessitates the use of adaptive trials with sequential decision- 
making to optimize and personalize interventions and outcomes.
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In many oncologic scenarios, there is a need for personalization and a quest to 
discover appropriate intervention. Furthermore, compliance or adherence to treat-
ment can vary. It is not feasible due to multiple factors such as cost, duration, toxic-
ity or lack of efficacy to launch a clinical trial with complete disregard of tumor 
heterogeneity or lack of compliance. Adaptive interventions provide a way to imple-
ment sequential strategies such as continue, step-up, switch, or step-down resulting 
in personalized sequences of treatment.

The Sequential Multiple Assignment Randomized Trial (SMART)—a multi-
stage randomized trial designs—was devised with the aim to build optimal adaptive 
interventions by providing individuals with treatments designed to be efficacious 
and feasible without being onerous. Despite increasing popularity due to their real- 
world clinical appeal, individualized approach, feasibility and conformity with 
modern era research aimed at developing high-quality adaptive interventions, 
SMARTs remain relatively uncommon [302]. Previously, SMART has been used in 
oncology to develop medication algorithms to treat prostate cancer [303, 304].

Here, we briefly present some highlights from a scenario examined by Almirall 
et al. regarding the development and application of adaptive interventions—formal-
ize individualized sequences of treatment—for optimizing weight loss among adult 
individuals who are overweight.

An appropriate adaptive intervention must consider variations in treatment 
response due to underlying tumor heterogeneity and patient compliance. The 
approach to craft an adaptive intervention workflow comprises of the follow-
ing steps:

 1. Constructing an individualized plan based on biomarker status, baseline tailor-
ing variables and available treatment options

 2. Identify individuals showing early signs of nonresponse
 3. Intermediate tailoring variables
 4. Adapt subsequent treatment to these nonresponding individuals

Often, a wide variety of critical questions must be answered before developing a 
high-quality adaptive intervention. Yet, at times, there is often insufficient empirical 
evidence or theoretical basis to answer these questions with accuracy and reliability. 
SMART uses experimental design principles to supplement the use of theoretical 
models and expert clinical consensus to obtain answers to many of the challenging 
critical questions around building adaptive interventions [305–308].

Typically, SMART trials have main effect aims (main comparison), embedded 
adaptive intervention aims (interactive effect) and optimization aims (more deeply 
tailored). Methods from reinforcement learning such as Q-learning have been 
employed [307, 309]. Adaptive intervention can span across the acute and mainte-
nance phase continuum.

SMART designs differ significantly from standard randomized clinical trials 
(RCT) in terms of their central aim. Whereas the central aim of a SMART is to 
construct a high-quality optimal adaptive intervention based on data, the central aim 
of an RCT is to evaluate the effectiveness of an already-developed intervention 
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versus a suitable control. The end result of a SMART is a proposal for an optimal 
adaptive intervention. Following the development of an optimized adaptive inter-
vention using data arising from a SMART, an investigator may choose to evaluate 
the optimized adaptive intervention versus a suitable control using a subse-
quent RCT.

AI-based approaches can be employed for the development of SMART design, 
gathering of data to create an adaptive intervention, match eligible and suitable 
patient, monitor outcome, improve retention, data analysis and design re-adaptation 
strategies.

19.4  Discussion and Recommendations

The evolution of clinical trials has resulted in compelling progress in the prevention 
and treatment of many diseases, including cancer. The focus today also includes 
patients’ symptom management, quality of life, omics and personalized medicine. 
Advances in medicine, improved surgical techniques, the development of new drugs 
and devices, the application of statistical techniques to research studies, recognition 
of the need for regulation, and the development of ethical codes impact the conduc-
tion of trials, both in the United States and internationally. Developments have been 
made to include more of the disparate populations and increase outreach activities 
within communities. Patients are more educated about their diagnosis and potential 
clinical trials and frequently seek out participation in research activities.

A randomized controlled trial is the gold standard for establishing standard treat-
ments, by evaluating the safety and efficacy of a therapy through assessment of a 
pre-established statistical hypothesis. The unacceptably high failure rate of clinical 
trials necessitates a fundamental transformation of the underlying clinical and inno-
vation model of the research industry to enable a needed paradigm shift to allow for 
a new feasible trajectory of progress and success. The rising costs of operating clini-
cal trials have limited the feasibility of conducting randomized controlled trials for 
all important clinical hypotheses. It is crucial to prioritize research questions appro-
priately and to understand the ideal mix of trials so as to amplify the generation of 
actionable evidence. Accurately characterizing the state of clinical research and 
reasons for failure is the first step toward an effective leveraging of limited resources 
and to alter the current course to ultimately result in more successful trials.

Multiple factors including, trial design, cost of trial, lack of treatment efficacy, 
safety concerns, ineffective site selection, eligibility criteria, patient recruitment and 
retention, patient burden, poor outcome monitoring, and inefficient data analysis, 
can impact the success of a trial Each of the facets of protocol design, execution, 
and successive trial planning offers opportunities for trading off different concerns, 
as well as simply making inappropriate judgments leading to poor outcomes. 
Formulating a list of these factors to consider when designing and executing a clini-
cal trial can provide a foundation for better outcomes. However, not all factors are 
equally important. For instance, there is a direct trade-off between the speed of 
enrollment and the cost of executing a trial A well-structured mathematical 
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framework for trading off degrees of achievement in various parameters can offer a 
quantitative measure for comparing alternative choices [310].

To stay on par with rapid development of molecular sciences and technology 
innovations, new experimental trial designs and methods of data analytics have been 
developed to efficiently evaluate single or multiple hypotheses. In oncology, new 
clinical trials that use basket, umbrella, platform, or other master protocols are 
expected to increase due to the focus on omics. Master protocol trials can be used to 
identify responders to a specific intervention and are anticipated to become one of 
the standard clinical trial designs to promote personalized treatment. Increased 
planning efforts and coordination to satisfy the objectives of different stakeholders 
is required. Improvement in data quality, trial efficiency due to innovative design 
and required coordination due to changing marketplace innovative design necessi-
tates an AI-based infrastructure. Currently, there is ongoing work in improving the 
ethical and statistical design of these master protocol trials.

Adaptive trial design methods reflect real oncologic scenarios and have the 
potential to deliver better treatment to patients. It can efficiently address multiple 
questions at the same time including early assessment of superiority or futility of a 
trial/group sequential design, adaptive randomization or dosing, adding or dropping 
arms, and changing accrual rates/sample size re-estimation. With its adaptable 
approach, it allows seamless phase I–II and phase II–III trials with a positive impact 
on both time and resources. The potential benefits of adaptive designs are greatest 
in complicated settings exemplified by personalized medical research. It employs 
modeling longitudinal information from individual patients, kept in a central data-
base connected to appropriate software, in order to predict outcomes. Thus, the 
logistics of adaptive trials are more complicated than the logistics for traditional 
trials. From the statistical point of view, a Bayesian statistical approach facilitates 
building complicated but maximally informative clinical trials. Regulatory guide-
lines can not only prevent possible misuse and/or abuse of adaptive design methods 
in clinical trials, but also maintain the validity and integrity of the trial.

Merging the concepts of adaptive design with platform protocols has led to adap-
tive platform trials (APTs)—perpetually testing alternative care strategies for a par-
ticular disease and efficiently using information generated during trial conduct to 
alter subsequent operations in a pre-specified way (Fig. 19.4). This design can play 
a promising role in patient-centered precision medicine. AI methods will undoubt-
edly play a role from trial pre-design (assessment of protocol feasibility, analysis of 
structured and unstructured data from pervious trials and scientific literature, data 
mining EMRs and publicly available content), iterative trial design (patient cohort 
optimization, study arms, within-trial adaptations, specification of parameters to be 
varied in simulation (underlying frequencies of subtypes, event rates and accrual 
rates; size of absolute and relative treatment effects, sample size, endpoint comple-
tion, failure vs. success designation), trial start-up (registration, site selection, sys-
tematic flexible protocol, statistical plan including different simulated trajectories, 
documentation of design process (including software for model, algorithm and 
simulations), ethical review of the risk–benefit ratio of various designs), trial execu-
tion (patient recruitment and retention, assessment of site performance, ongoing 
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biomarker analysis, secure and interoperable data sharing, real-time monitoring and 
coaching of patients through smartphone and video tools, predicting compliance 
issues and dropouts, alerts for missed appointments) and trial reporting (detailed 
accounting and reporting of patients, periodic analysis of entire APT, data cleaning 
by ML) [311].

Over the past decade, AI tools have progressed to a level that allows them to be 
implemented in practical life to complement human decision-making capabilities in 
the medical field in general and oncology in particular. AI has the potential to trans-
form key steps of clinical trial design from study preparation to execution toward 
improving trial success rates, thus lowering the associated cost. However, the field of 
healthcare and clinical research has been relatively slow to adapt to this rapid pace of 
innovation despite the dire need to implement techniques to augment clinical trial 
success and the unprecedented explosion of big data. Tight regulations and policies 
contribute to the rigidity of the system. Innovative changes challenging the estab-
lished practices need to be implemented cautiously and systematically. Furthermore, 
the added cost of investing in such technology, at least, in the up-front setting, and in 
an already underfunded clinical trials area, seems to discourage this trend as well.

There is a need for clinicians, researchers, biomedical engineers, and data scien-
tists to work together and collaborate to assess the current state of AI, evaluate the 
new technology’s added value in the current setting and pool their resources to apply 
the AI tools to promote maximum achievable benefit leading to the clinical trial’s 
overall efficiency. The AI applications need to be validated in a repeatable and repro-
ducible way. Any ethical, transparency and explainability concerns should be 
addressed for it to be accepted in real-world applications. The combined efforts of 
healthcare, AI industry and regulatory bodies toward the ideals of data integrity, 
provenance, secure data exchange and interoperability are ongoing. To gain and 
maintain the trust of researchers and clinicians, it is imperative to establish high qual-
ity and rigor from the beginning. It is important to note that the measurable impact of 
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Adaptive
design

Adaptive
Platform
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Platform
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Fig. 19.4 Adaptive Platform trial design
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AI tools on the reshaping and efficiency of the clinical trials system is not going to 
be instantaneous and will not show up in the statistics until after a 5–10- year delay.

Key recommendations to encourage widespread adoption of AI processes in 
clinical trials are outlined below:

 1. Collect, extract, and organize large sets of global omics data, past clinical stud-
ies, journal articles, and real-world data, to advance patient selection and eli-
gibility, trial matching, patient burden and visit management, site performance, 
compliance, retention statistics, adverse event detection and outcome 
prediction.

 2. Shared protocols and algorithm repository to provide a greater insight and 
transparency

 3. Encourage secure exchange of datasets to allow the data to be collectively used 
to train and test AI and ML models.

 4. Encourage secure exchange of encrypted AI and ML algorithms.

19.5  Conclusions

High failure rates of clinical trials contribute substantially to the inefficiency of the 
clinical trial process. With AI and ML tools and related personnel increasing at a 
rapid pace, the trickling of these processes to assist with innovative clinical trial 
design, big data collation, data analysis, patient monitoring and outcome modeling 
will unquestionably increase. AI, including imaging informatics, is expected to 
develop decision-support systems for precision medicine and personalized health-
care. However, one has to be cognizant of the limitations of this disruptive technol-
ogy as well. AI methods require large amounts of data for their training and 
validation, which also beg the questions of trust, secure data sharing, and privacy 
concerns. Focus on interoperability, transparency and secure algorithm exchange 
will assist in validation and promotion of trust amongst the stakeholders. Aside 
from media hype, the cautious deployment of the state-of-the-art AI/ML technolo-
gies, hold tremendous potential to revolutionize clinical trial designs and deliver 
intended results (Box 19.1).

Box 19.1 Different Terminology Used in AI
Artificial Intelligence (AI): The ability of a software or machine to perform 
tasks commonly associated with intelligent beings. The term is usually 
referred to systems endowed with intellectual processes characteristic of 
humans, such as the ability to reason, discover meaning, generalize, or learn 
from past experience.

Brain–machine interface (BMI): A direct communication pathway 
between an enhanced or wired brain and an external device. Also referred to 
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as a brain–computer interface (BCI), a mind–machine interface (MMI), or a 
direct neural interface (DNI).

Human–machine interface (HMI): A user interface or dashboard allow-
ing direct communication between a human and a device.

Machine learning (ML): The ability to learn, improve and predict from 
data using algorithms and mathematical modeling without being explicitly 
programmed to perform the task.

Deep learning (DL): A type of machine learning that uses layered artificial 
neural networks to progressively extract higher level features from large 
amounts of raw data.

Raw Data: Unprocessed data such as EMR.
Classification: Machine learning to separate data into categories such as 

biomarker positive vs. negative.
Regression: Machine learning to predict a continuous numerical output 

from data.
Dimensionality Reduction: Process in machine learning to reduce the 

number of random/complex variables under consideration by obtaining a set 
of principal/simplified variables.

Clustering: Machine learning to separate a group of abstract data into dis-
tinct classes or bins such that the objects in the same class are more similar to 
each other than those in other classes.

Supervised Learning: Machine learning to learn patterns from labeled 
training data.

Unsupervised Learning: Machine learning to learn patterns from unla-
beled data, allowing the model to discover information on its own.

Association rule mining: Rule-based machine learning algorithms for dis-
covering and extracting interesting relations between uncategorized variables 
in large databases.

Deep reinforcement learning (DRL): Machine learning that focuses on 
deep learning (DL) and reinforcement learning (RL) to create efficient algo-
rithms that can take actions in an environment so as to maximize some notion 
of cumulative reward.

Natural language processing (NLP): A subfield of AI, broadly defined by 
the automatic manipulation of natural language such as text and speech, by 
software.

Optical character recognition (OCR): A subfield of AI, defined by pat-
tern recognition aimed at the electronic conversion of images of typed, hand-
written, or printed text into machine-encoded text, whether from a scanned 
document, a photo of a document, a scene-photo, or from subtitle text super-
imposed on an image.
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